Département de Microbiologie, Institut Pasteur, Unité de Génétique Moléculaire, F-75015 Paris, France.
J Bacteriol. 2010 Dec;192(24):6401-10. doi: 10.1128/JB.00801-10. Epub 2010 Oct 8.
The RpoS sigma factor (σ(S)) is the master regulator of the bacterial response to a variety of stresses. Mutants in rpoS arise in bacterial populations in the absence of stress, probably as a consequence of a subtle balance between self-preservation and nutritional competence. We characterized here one natural rpoS mutant of Salmonella enterica serovar Typhi (Ty19). We show that the rpoS allele of Ty19 (rpoS(Ty19)) led to the synthesis of a σ(S)(Ty19) protein carrying a single glycine-to-valine substitution at position 282 in σ(S) domain 4, which was much more dependent than the wild-type σ(S) protein on activation by Crl, a chaperone-like protein that increases the affinity of σ(S) for the RNA polymerase core enzyme (E). We used the bacterial adenylate cyclase two-hybrid system to demonstrate that Crl bound to residues 72 to 167 of σ(S) domain 2 and that G282V substitution did not directly affect Crl binding. However, this substitution drastically reduced the ability of σ(S)(Ty19) to bind E in a surface plasmon resonance assay, a defect partially rescued by Crl. The modeled structure of the Eσ(S) holoenzyme suggested that substitution G282V could directly disrupt a favorable interaction between σ(S) and E. The rpoS(Ty19) allele conferred a competitive fitness when the bacterial population was wild type for crl but was outcompeted in Δcrl populations. Thus, these results indicate that the competitive advantage of the rpoS(Ty19) mutant is dependent on Crl and suggest that crl plays a role in the appearance of rpoS mutants in bacterial populations.
RpoS 西格玛因子(σ(S))是细菌应对多种应激的主要调节因子。rpoS 突变体在没有应激的情况下出现在细菌群体中,可能是由于自我保护和营养能力之间的微妙平衡造成的。我们在这里描述了沙门氏菌血清型 Typhi(Ty19)的一种天然 rpoS 突变体。我们表明,Ty19 的 rpoS 等位基因(rpoS(Ty19))导致 σ(S)(Ty19)蛋白的合成,该蛋白在 σ(S)结构域 4 中的第 282 位有一个单一的甘氨酸到缬氨酸取代,与野生型 σ(S)蛋白相比,它更依赖于伴侣样蛋白 Crl 的激活,Crl 增加了 σ(S)与 RNA 聚合酶核心酶(E)的亲和力。我们使用细菌腺苷酸环化酶双杂交系统证明 Crl 结合到 σ(S)结构域 2 的 72 到 167 位残基,并且 G282V 取代不会直接影响 Crl 结合。然而,这种取代极大地降低了 σ(S)(Ty19)在表面等离子体共振分析中与 E 结合的能力,Crl 部分挽救了这一缺陷。Eσ(S)全酶的模型结构表明,G282V 取代可以直接破坏 σ(S)和 E 之间的有利相互作用。当细菌群体对 crl 为野生型时,rpoS(Ty19)等位基因赋予竞争优势,但在 Δcrl 群体中被竞争淘汰。因此,这些结果表明,rpoS(Ty19)突变体的竞争优势依赖于 Crl,并表明 crl 在细菌群体中 rpoS 突变体的出现中发挥作用。