Suppr超能文献

布尔查询与等级查询在生物医学系统评价中的比较。

Boolean versus ranked querying for biomedical systematic reviews.

机构信息

NICTA, Dept. of Computer Science and Software Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia.

出版信息

BMC Med Inform Decis Mak. 2010 Oct 12;10:58. doi: 10.1186/1472-6947-10-58.

Abstract

BACKGROUND

The process of constructing a systematic review, a document that compiles the published evidence pertaining to a specified medical topic, is intensely time-consuming, often taking a team of researchers over a year, with the identification of relevant published research comprising a substantial portion of the effort. The standard paradigm for this information-seeking task is to use Boolean search; however, this leaves the user(s) the requirement of examining every returned result. Further, our experience is that effective Boolean queries for this specific task are extremely difficult to formulate and typically require multiple iterations of refinement before being finalized.

METHODS

We explore the effectiveness of using ranked retrieval as compared to Boolean querying for the purpose of constructing a systematic review. We conduct a series of experiments involving ranked retrieval, using queries defined methodologically, in an effort to understand the practicalities of incorporating ranked retrieval into the systematic search task.

RESULTS

Our results show that ranked retrieval by itself is not viable for this search task requiring high recall. However, we describe a refinement of the standard Boolean search process and show that ranking within a Boolean result set can improve the overall search performance by providing early indication of the quality of the results, thereby speeding up the iterative query-refinement process.

CONCLUSIONS

Outcomes of experiments suggest that an interactive query-development process using a hybrid ranked and Boolean retrieval system has the potential for significant time-savings over the current search process in the systematic reviewing.

摘要

背景

构建系统评价是一项艰巨的任务,需要耗费大量时间,通常需要一个研究团队花费一年以上的时间,其中识别相关的已发表研究是主要工作之一。这项任务的标准信息检索方法是使用布尔搜索,但这要求用户检查每个返回的结果。此外,我们的经验表明,对于这项特定任务,有效的布尔查询非常难以制定,通常需要经过多次迭代细化才能最终确定。

方法

我们探讨了使用排序检索与布尔查询相比在构建系统评价中的效果。我们进行了一系列涉及排序检索的实验,使用方法学定义的查询,以了解将排序检索纳入系统搜索任务的实际情况。

结果

我们的结果表明,排序检索本身不适用于需要高召回率的搜索任务。然而,我们描述了对标准布尔搜索过程的改进,并表明在布尔结果集中进行排序可以通过提供结果质量的早期指示来提高整体搜索性能,从而加快迭代查询细化过程。

结论

实验结果表明,使用混合排序和布尔检索系统的交互式查询开发过程可能会显著节省当前系统评价中的搜索时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92b8/2966450/4f27bd36e3d7/1472-6947-10-58-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验