Suppr超能文献

视蛋白转变与视紫红质光谱调谐的机制。

The opsin shift and mechanism of spectral tuning in rhodopsin.

机构信息

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

J Comput Chem. 2011 Apr 15;32(5):854-65. doi: 10.1002/jcc.21663. Epub 2010 Oct 12.

Abstract

Molecular dynamics simulations and combined quantum mechanical and molecular mechanical calculations have been performed to investigate the mechanism of the opsin shift and spectral tuning in rhodopsin. A red shift of -980 cm(-1) was estimated in the transfer of the chromophore from methanol solution environment to the protonated Schiff base (PSB)-binding site of the opsin. The conformational change from a 6-s-cis-all-trans configuration in solution to the 6-s-cis-11-cis conformer contributes additional -200 cm(-1), and the remaining effects were attributed to dispersion interactions with the aromatic residues in the binding site. An opsin shift of 2100 cm(-1) was obtained, in reasonable accord with experiment (2730 cm(-1)). Dynamics simulations revealed that the 6-s-cis bond can occupy two main conformations for the β-ionone ring, resulting in a weighted average dihedral angle of about -50°, which may be compared with the experimental estimate of -28° from solid-state NMR and Raman data. We investigated a series of four single mutations, including E113D, A292S, T118A, and A269T, which are located near the PSB, along the polyene chain of retinal and close to the ionone ring. The computational results on absorption energy shift provided insights into the mechanism of spectral tuning, which involves all means of electronic structural effects, including the stabilization or destabilization of either the ground or the electronically excited state of the retinal PSB.

摘要

运用分子动力学模拟和量子力学与分子力学相结合的方法,研究了视蛋白中视黄醛的位移和光谱调谐机制。从发色团在甲醇溶液环境中的转移到视蛋白的质子化席夫碱(PSB)结合部位,估计出红移为-980 cm(-1)。从溶液中的 6-s-顺式全反式构象到 6-s-顺式-11-顺式构象的构象变化贡献了额外的-200 cm(-1),其余的影响归因于与结合部位芳香残基的色散相互作用。得到的视蛋白位移为 2100 cm(-1),与实验值(2730 cm(-1))吻合较好。动力学模拟表明,6-s-顺式键可以占据β-紫罗酮环的两个主要构象,导致约-50°的加权平均二面角,这可以与固态 NMR 和拉曼数据的实验估计值-28°进行比较。我们研究了一系列四个单点突变,包括 E113D、A292S、T118A 和 A269T,它们位于 PSB 附近、视黄醛多烯链上以及紫罗酮环附近。对吸收能位移的计算结果提供了对光谱调谐机制的深入了解,涉及电子结构效应的所有手段,包括视黄醛 PSB 的基态或电子激发态的稳定或失稳。

相似文献

1
The opsin shift and mechanism of spectral tuning in rhodopsin.
J Comput Chem. 2011 Apr 15;32(5):854-65. doi: 10.1002/jcc.21663. Epub 2010 Oct 12.
2
Solid-state NMR studies of the mechanism of the opsin shift in the visual pigment rhodopsin.
Biochemistry. 1990 Sep 4;29(35):8158-64. doi: 10.1021/bi00487a025.
3
The role of the beta-ionone ring in the photochemical reaction of rhodopsin.
J Phys Chem A. 2007 Jan 11;111(1):27-33. doi: 10.1021/jp065510f.
4
Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
Photochem Photobiol. 2008 Jul-Aug;84(4):985-9. doi: 10.1111/j.1751-1097.2008.00338.x. Epub 2008 Apr 9.
6
How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore.
J Chem Theory Comput. 2017 Sep 12;13(9):4524-4534. doi: 10.1021/acs.jctc.7b00229. Epub 2017 Aug 15.
7
Retinal conformation governs pKa of protonated Schiff base in rhodopsin activation.
J Am Chem Soc. 2013 Jun 26;135(25):9391-8. doi: 10.1021/ja4002986. Epub 2013 Jun 11.
8
Photophysiological functions of visual pigments.
Adv Biophys. 1984;17:5-67. doi: 10.1016/0065-227x(84)90024-8.
9
Exploring the molecular mechanism for color distinction in humans.
J Phys Chem B. 2006 Aug 31;110(34):17230-9. doi: 10.1021/jp057144q.
10
The nature of the primary photochemical events in rhodopsin and isorhodopsin.
Biophys J. 1988 Mar;53(3):367-85. doi: 10.1016/S0006-3495(88)83114-X.

引用本文的文献

1
3
In-silico predicted mouse melanopsins with blue spectral shifts deliver efficient subcellular signaling.
Cell Commun Signal. 2024 Aug 8;22(1):394. doi: 10.1186/s12964-024-01753-0.
4
Merocyanines form bacteriorhodopsins with strongly bathochromic absorption maxima.
Photochem Photobiol Sci. 2024 Jan;23(1):31-53. doi: 10.1007/s43630-023-00496-0. Epub 2023 Dec 9.
5
Enzymatic vitamin A production enables red-shifted optogenetics.
Pflugers Arch. 2023 Dec;475(12):1409-1419. doi: 10.1007/s00424-023-02880-2. Epub 2023 Nov 21.
6
Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs.
Nat Commun. 2022 Aug 17;13(1):4842. doi: 10.1038/s41467-022-32441-7.
7
Vitamin A/A chromophore exchange: Its role in spectral tuning and visual plasticity.
Dev Biol. 2021 Jul;475:145-155. doi: 10.1016/j.ydbio.2021.03.002. Epub 2021 Mar 6.
8
Short-wavelength-sensitive 2 (Sws2) visual photopigment models combined with atomistic molecular simulations to predict spectral peaks of absorbance.
PLoS Comput Biol. 2020 Oct 21;16(10):e1008212. doi: 10.1371/journal.pcbi.1008212. eCollection 2020 Oct.
9
Crystal structure of the red light-activated channelrhodopsin Chrimson.
Nat Commun. 2018 Sep 26;9(1):3949. doi: 10.1038/s41467-018-06421-9.
10
Predicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations.
PLoS Comput Biol. 2018 Jan 24;14(1):e1005974. doi: 10.1371/journal.pcbi.1005974. eCollection 2018 Jan.

本文引用的文献

2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Effect of polarization on the opsin shift in rhodopsins. 2. Empirical polarization models for proteins.
J Phys Chem B. 2008 Sep 18;112(37):11468-78. doi: 10.1021/jp802409k. Epub 2008 Aug 26.
5
Spectral tuning in visual pigments: an ONIOM(QM:MM) study on bovine rhodopsin and its mutants.
J Phys Chem B. 2008 Jun 5;112(22):6814-27. doi: 10.1021/jp709730b. Epub 2008 May 13.
6
An opsin shift in rhodopsin: retinal S0-S1 excitation in protein, in solution, and in the gas phase.
J Am Chem Soc. 2007 Oct 31;129(43):13035-42. doi: 10.1021/ja0732126. Epub 2007 Oct 9.
7
Origin of spectral tuning in rhodopsin--it is not the binding pocket.
Angew Chem Int Ed Engl. 2007;46(1-2):269-71. doi: 10.1002/anie.200603306.
8
Absorption studies of neutral retinal Schiff base chromophores.
J Phys Chem A. 2006 Nov 23;110(46):12592-6. doi: 10.1021/jp064901r.
9
The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17154-9. doi: 10.1073/pnas.0604048103. Epub 2006 Nov 7.
10
Exploring the molecular mechanism for color distinction in humans.
J Phys Chem B. 2006 Aug 31;110(34):17230-9. doi: 10.1021/jp057144q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验