Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
Nat Commun. 2022 Aug 17;13(1):4842. doi: 10.1038/s41467-022-32441-7.
Microbial channelrhodopsins are light-gated ion channels widely used for optogenetic manipulation of neuronal activity. ChRmine is a bacteriorhodopsin-like cation channelrhodopsin (BCCR) more closely related to ion pump rhodopsins than other channelrhodopsins. ChRmine displays unique properties favorable for optogenetics including high light sensitivity, a broad, red-shifted activation spectrum, cation selectivity, and large photocurrents, while its slow closing kinetics impedes some applications. The structural basis for ChRmine function, or that of any other BCCR, is unknown. Here, we present cryo-EM structures of ChRmine in lipid nanodiscs in apo (opsin) and retinal-bound (rhodopsin) forms. The structures reveal an unprecedented trimeric architecture with a lipid filled central pore. Large electronegative cavities on either side of the membrane facilitate high conductance and selectivity for cations over protons. The retinal binding pocket structure suggests channel properties could be tuned with mutations and we identify ChRmine variants with ten-fold decreased and two-fold increased closing rates. A T119A mutant shows favorable properties relative to wild-type and previously reported ChRmine variants for optogenetics. These results provide insight into structural features that generate an ultra-potent microbial opsin and provide a platform for rational engineering of channelrhodopsins with improved properties that could expand the scale, depth, and precision of optogenetic experiments.
微生物通道蛋白是广泛用于光遗传学操纵神经元活动的光门控离子通道。ChRmine 是一种类似于细菌视紫红质的阳离子通道蛋白(BCCR),与其他通道蛋白相比,它与离子泵视紫红质更为接近。ChRmine 具有独特的性质,有利于光遗传学应用,包括高光敏性、宽而红移的激活光谱、阳离子选择性和大的光电流,但其缓慢的关闭动力学阻碍了一些应用。ChRmine 功能或任何其他 BCCR 的结构基础尚不清楚。在这里,我们展示了 ChRmine 在脂质纳米盘中的apo(视蛋白)和视网膜结合(视黄醛)形式的冷冻电镜结构。这些结构揭示了一种前所未有的三聚体结构,具有填充脂质的中央孔。膜两侧的大负电性腔有利于高电导率和阳离子相对于质子的选择性。视黄醛结合口袋的结构表明,可以通过突变来调节通道特性,我们确定了 ChRmine 的变体,其关闭速率降低了十倍,增加了两倍。T119A 突变体相对于野生型和以前报道的 ChRmine 变体具有更好的光遗传学特性。这些结果提供了对产生超效微生物视蛋白的结构特征的深入了解,并为理性工程提供了一个平台,以改善具有改进特性的通道蛋白,从而扩大光遗传学实验的规模、深度和精度。