Runge M Brett, Dadsetan Mahrokh, Baltrusaitis Jonas, Ruesink Terry, Lu Lichun, Windebank Anthony J, Yaszemski Michael J
Departments of Orthopedic Surgery, Biomedical Engineering, and Neurology, Mayo Clinic College of Medicine, 200 First Street SW, MS 3-69, Rochester, Minnesota 55905, and Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa 52243.
Biomacromolecules. 2010 Nov 8;11(11):2845-53. doi: 10.1021/bm100526a. Epub 2010 Oct 13.
Electrically conductive hydrogel composites consisting of oligo(polyethylene glycol) fumarate (OPF) and polypyrrole (PPy) were developed for applications in nerve regeneration. OPF-PPy scaffolds were synthesized using three different anions: naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), and dioctyl sulfosuccinate sodium salt (DOSS). Scaffolds were characterized by ATR-FTIR, XPS, AFM, dynamic mechanical analysis, electrical resistivity measurements, and swelling experiments. OPF-PPy scaffolds were shown to consist of up to 25 mol % polypyrrole with a compressive modulus ranging from 265 to 323 kPa and a sheet resistance ranging from 6 to 30 × 10(3) Ohms/square. In vitro studies using PC12 cells showed OPF-PPy materials had no cytotoxicity and PC12 cells showed distinctly better cell attachment and an increase in the percent of neurite bearing cells on OPF-PPy materials compared to OPF. The neurite lengths of PC12 cells were significantly higher on OPF-PPyNSA and OPF-PPyDBSA. These results show that electrically conductive OPF-PPy hydrogels are promising candidates for future applications in nerve regeneration.
由富马酸寡聚(聚乙二醇)(OPF)和聚吡咯(PPy)组成的导电水凝胶复合材料被开发用于神经再生领域。使用三种不同的阴离子合成了OPF-PPy支架:萘-2-磺酸钠盐(NSA)、十二烷基苯磺酸钠盐(DBSA)和二辛基磺基琥珀酸钠盐(DOSS)。通过衰减全反射傅里叶变换红外光谱(ATR-FTIR)、X射线光电子能谱(XPS)、原子力显微镜(AFM)、动态力学分析、电阻率测量和溶胀实验对支架进行了表征。结果表明,OPF-PPy支架中聚吡咯含量高达25摩尔%,压缩模量在265至323千帕之间,薄层电阻在6至30×10(3)欧姆/平方之间。使用PC12细胞的体外研究表明,OPF-PPy材料没有细胞毒性,并且与OPF相比,PC12细胞在OPF-PPy材料上表现出明显更好的细胞附着以及神经突生成细胞百分比的增加。在OPF-PPyNSA和OPF-PPyDBSA上,PC12细胞的神经突长度明显更长。这些结果表明,导电的OPF-PPy水凝胶有望在未来的神经再生应用中发挥作用。