Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, USA.
J Chem Phys. 2010 Oct 7;133(13):134105. doi: 10.1063/1.3484283.
With recent advances in electronic structure methods, first-principles calculations of electronic response properties, such as linear and nonlinear polarizabilities, have become possible for molecules with more than 100 atoms. Basis set incompleteness is typically the main source of error in such calculations since traditional diffuse augmented basis sets are too costly to use or suffer from near linear dependence. To address this problem, we construct the first comprehensive set of property-optimized augmented basis sets for elements H-Rn except lanthanides. The new basis sets build on the Karlsruhe segmented contracted basis sets of split-valence to quadruple-zeta valence quality and add a small number of moderately diffuse basis functions. The exponents are determined variationally by maximization of atomic Hartree-Fock polarizabilities using analytical derivative methods. The performance of the resulting basis sets is assessed using a set of 313 molecular static Hartree-Fock polarizabilities. The mean absolute basis set errors are 3.6%, 1.1%, and 0.3% for property-optimized basis sets of split-valence, triple-zeta, and quadruple-zeta valence quality, respectively. Density functional and second-order Møller-Plesset polarizabilities show similar basis set convergence. We demonstrate the efficiency of our basis sets by computing static polarizabilities of icosahedral fullerenes up to C(720) using hybrid density functional theory.
随着电子结构方法的最新进展,对于超过 100 个原子的分子,第一性原理计算电子响应性质,如线性和非线性极化率,已经成为可能。在这种计算中,基组不完备通常是主要的误差源,因为传统的弥散扩充基组太昂贵而无法使用或存在近乎线性的依赖性。为了解决这个问题,我们构建了除镧系元素之外的 H-Rn 元素的第一套全面的特性优化扩充基组。新的基组基于 Karlsruhe 分段收缩的分裂价到四重价质量的基组,并添加了少量适度弥散的基函数。指数是通过使用解析导数方法最大化原子哈特利-福克极化率来变分确定的。通过一组 313 个分子静态哈特利-福克极化率来评估所得基组的性能。对于分裂价、三重价和四重价质量的特性优化基组,平均绝对基组误差分别为 3.6%、1.1%和 0.3%。密度泛函和二阶 Møller-Plesset 极化率显示出相似的基组收敛性。我们通过使用混合密度泛函理论计算了多达 C(720)的二十面体富勒烯的静态极化率,展示了我们基组的效率。