Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
J Chem Phys. 2010 Oct 7;133(13):134901. doi: 10.1063/1.3501360.
Charge transport properties of a columnar mesophase of carbazole macrocycles are analyzed. Realistic morphologies are sampled using all-atom molecular dynamics simulations while charge transport is simulated using the kinetic Monte Carlo method with transfer rates obtained from the high temperature nonadiabatic limit of Marcus theory. It is shown that the molecular design with side chains pointing inside the macrocycle allows close approach between molecules of neighboring columns, thus enabling three-dimensional transport and helping to circumvent charge trapping on structural defects.
对咔唑大环的柱状介相的电荷输运性质进行了分析。通过全原子分子动力学模拟来采样真实的形态,而电荷输运则使用从 Marcus 理论的高温非绝热极限得到的转移速率的动力学蒙特卡罗方法来模拟。结果表明,带有指向大环内部的侧链的分子设计允许相邻柱的分子紧密接近,从而实现三维输运,并有助于避免结构缺陷上的电荷捕获。