Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
J Am Chem Soc. 2010 Aug 25;132(33):11702-8. doi: 10.1021/ja104380c.
We analyze the relationship among the molecular structure, morphology, percolation network, and charge carrier mobility in four organic crystals: rubrene, indolo[2,3-b]carbazole with CH(3) side chains, and benzo[1,2-b:4,5-b']bis[b]benzothiophene derivatives with and without C(4)H(9) side chains. Morphologies are generated using an all-atom force field, while charge dynamics is simulated within the framework of high-temperature nonadiabatic Marcus theory or using semiclassical dynamics. We conclude that, on the length scales reachable by molecular dynamics simulations, the charge transport in bulk molecular crystals is mostly limited by the dynamic disorder, while in self-assembled monolayers the static disorder, which is due to the slow motion of the side chains, enhances charge localization and influences the transport dynamics. We find that the presence of disorder can either reduce or increase charge carrier mobility, depending on the dimensionality of the charge percolation network. The advantages of charge transporting materials with two- or three-dimensional networks are clearly shown.
芘、吲哚[2,3-b]咔唑与 CH(3)侧链、苯并[1,2-b:4,5-b']双[苯并噻吩]衍生物(有和没有 C(4)H(9)侧链)中分子结构、形态、渗流网络和电荷载流子迁移率之间的关系。形态是使用全原子力场生成的,而电荷动力学是在高温非绝热 Marcus 理论框架内或使用半经典动力学来模拟的。我们得出结论,在分子动力学模拟可达的长度尺度上,体相分子晶体中的电荷输运主要受到动态无序的限制,而在自组装单层中,由于侧链的缓慢运动引起的静态无序增强了电荷局域化并影响了输运动力学。我们发现,无序的存在可以降低或增加电荷载流子迁移率,这取决于电荷渗流网络的维度。具有二维或三维网络的电荷输运材料的优势显然得到了体现。