Suppr超能文献

肥胖信号对下丘脑室旁核中表达促甲状腺激素释放激素的神经元的调节作用。

Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity.

作者信息

Ghamari-Langroudi Masoud, Vella Kristen R, Srisai Dollada, Sugrue Michelle L, Hollenberg Anthony N, Cone Roger D

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

出版信息

Mol Endocrinol. 2010 Dec;24(12):2366-81. doi: 10.1210/me.2010-0203. Epub 2010 Oct 13.

Abstract

Fasting-induced suppression of thyroid hormone levels is an adaptive response to reduce energy expenditure in both humans and mice. This suppression is mediated by the hypothalamic-pituitary-thyroid axis through a reduction in TRH levels expressed in neurons of the paraventricular nucleus of the hypothalamus (PVN). TRH gene expression is positively regulated by leptin. Whereas decreased leptin levels during fasting lead to a reduction in TRH gene expression, the mechanisms underlying this process are still unclear. Indeed, evidence exists that TRH neurons in the PVN are targeted by leptin indirectly via the arcuate nucleus, whereas correlative evidence for a direct action exists as well. Here we provide both in vivo and in vitro evidence that the activity of hypothalamic-pituitary-thyroid axis is regulated by both direct and indirect leptin regulation. We show that both leptin and α-MSH induce significant neuronal activity mediated through a postsynaptic mechanism in TRH-expressing neurons of PVN. Furthermore, we provide in vivo evidence indicating the contribution of each pathway in maintaining serum levels of thyroid hormone.

摘要

禁食诱导的甲状腺激素水平抑制是人类和小鼠减少能量消耗的一种适应性反应。这种抑制是由下丘脑 - 垂体 - 甲状腺轴介导的,通过降低下丘脑室旁核(PVN)神经元中表达的促甲状腺激素释放激素(TRH)水平来实现。TRH基因表达受瘦素正向调节。禁食期间瘦素水平降低导致TRH基因表达减少,然而这一过程的潜在机制仍不清楚。实际上,有证据表明PVN中的TRH神经元通过弓状核间接受到瘦素的作用,同时也存在直接作用的相关证据。在此我们提供体内和体外证据,表明下丘脑 - 垂体 - 甲状腺轴的活性受瘦素的直接和间接调节。我们发现瘦素和α - 促黑素细胞激素(α - MSH)均可通过突触后机制在PVN中表达TRH的神经元中诱导显著的神经元活动。此外,我们提供的体内证据表明了每条途径在维持血清甲状腺激素水平中的作用。

相似文献

6
Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin.
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):355-60. doi: 10.1073/pnas.1016785108. Epub 2010 Dec 15.
7
Fasting reduces the number of TRH immunoreactive neurons in the hypothalamic paraventricular nucleus of male rats, but not in mice.
Neurosci Lett. 2021 May 1;752:135832. doi: 10.1016/j.neulet.2021.135832. Epub 2021 Mar 18.
9
Regulation of Thyroid Hormone Levels by Hypothalamic Thyrotropin-Releasing Hormone Neurons.
Thyroid. 2023 Jul;33(7):867-876. doi: 10.1089/thy.2023.0173. Epub 2023 Jun 6.

引用本文的文献

2
Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system.
Mol Metab. 2025 Jan;91:102078. doi: 10.1016/j.molmet.2024.102078. Epub 2024 Nov 29.
3
Physical activity affects dysthyreosis by thyroid hormones sensitivity: a population-based study.
Front Endocrinol (Lausanne). 2024 Oct 28;15:1418766. doi: 10.3389/fendo.2024.1418766. eCollection 2024.
4
Endocrine gland size is proportional to its target tissue size.
iScience. 2024 Jul 31;27(9):110625. doi: 10.1016/j.isci.2024.110625. eCollection 2024 Sep 20.
5
Thyrotropin-Releasing Hormone and Food Intake in Mammals: An Update.
Metabolites. 2024 May 26;14(6):302. doi: 10.3390/metabo14060302.
6
Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts.
Nutrients. 2024 May 26;16(11):1629. doi: 10.3390/nu16111629.
7
Thyroid hormone action and liver disease, a complex interplay.
Hepatology. 2025 Feb 1;81(2):651-669. doi: 10.1097/HEP.0000000000000551. Epub 2023 Aug 2.
8
Association between different metabolic phenotypes of obesity and thyroid disorders among Chinese adults: a nationwide cross-sectional study.
Front Endocrinol (Lausanne). 2023 Apr 21;14:1158013. doi: 10.3389/fendo.2023.1158013. eCollection 2023.
10
The pattern of TSH and fT4 levels across different BMI ranges in a large cohort of euthyroid patients with obesity.
Front Endocrinol (Lausanne). 2022 Oct 13;13:1029376. doi: 10.3389/fendo.2022.1029376. eCollection 2022.

本文引用的文献

1
The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo.
Endocrinology. 2010 Feb;151(2):793-801. doi: 10.1210/en.2009-0976. Epub 2009 Dec 23.
3
The TRH neuron: a hypothalamic integrator of energy metabolism.
Prog Brain Res. 2006;153:209-35. doi: 10.1016/S0079-6123(06)53012-2.
5
Agouti-related protein-deficient mice display an age-related lean phenotype.
Cell Metab. 2005 Dec;2(6):421-7. doi: 10.1016/j.cmet.2005.11.004.
7
LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin.
Diabetes. 2004 Dec;53(12):3067-73. doi: 10.2337/diabetes.53.12.3067.
8
Abnormalities of the hypothalamo-pituitary-thyroid axis in the pro-opiomelanocortin deficient mouse.
Regul Pept. 2004 Nov 15;122(3):169-72. doi: 10.1016/j.regpep.2004.06.012.
9
Recombinant human leptin in women with hypothalamic amenorrhea.
N Engl J Med. 2004 Sep 2;351(10):987-97. doi: 10.1056/NEJMoa040388.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验