Nanomaterials and Microsystems Group, Physics Department, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain.
Phys Chem Chem Phys. 2010 Nov 28;12(44):14693-8. doi: 10.1039/c0cp00208a. Epub 2010 Oct 13.
Vapor deposited thin films (~100 nm thickness) of toluene and ethylbenzene grown by physical vapor deposition show enhanced stability with respect to samples slowly cooled from the liquid at a rate of 5 K min(-1). The heat capacity is measured in situ immediately after growth from the vapor or after re-freezing from the supercooled liquid at various heating rates using quasi-adiabatic nanocalorimetry. Glasses obtained from the vapor have low enthalpies and large heat capacity overshoots that are shifted to high temperatures. The stability is maximized at growth temperatures in the vicinity of 0.8 T(g) for both molecules, although glasses of ethylbenzene show superior stabilization. Our data is consistent with previous results of larger organic molecules suggesting a generalized behavior on the stability of organic glasses grown from the vapor. In addition, we find that for the small molecules analyzed here, slowing the growth rate below 0.1 nm s(-1) does not result in increased thermodynamic stability.
通过物理气相沉积生长的甲苯和乙苯的气相沉积薄膜(~100nm 厚)相对于以 5K/min 的速率从液相缓慢冷却的样品具有增强的稳定性。使用准绝热纳米量热法,在生长后立即从气相或从过冷液体在各种加热速率下重新冷冻原位测量热容量。从气相获得的玻璃具有低焓和大的过冷容量,这些过冷容量被转移到高温。对于这两种分子,在接近 0.8T(g)的生长温度下,稳定性最大化,尽管乙苯的玻璃具有更好的稳定性。我们的数据与先前关于从气相生长的有机玻璃稳定性的更大有机分子的结果一致,表明存在一种普遍的行为。此外,我们发现对于这里分析的小分子,将生长速率降低到 0.1nm/s 以下并不会导致热力学稳定性增加。