College of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea.
Arch Pharm Res. 2010 Sep;33(9):1451-9. doi: 10.1007/s12272-010-0920-z. Epub 2010 Oct 14.
The knowledge of protein functions as well as structures is critical for drug discovery and development. The FEATURE system developed at Stanford is an effective tool for characterizing and classifying local environments in proteins. FEATURE utilizes vectors of a fixed dimension to represent the physicochemical properties around a residue. Functional sites and non-sites are identified by classifying such vectors using the Naïve Bayes classifier. In this paper, we improve the FEATURE framework in several ways so that it can be more flexible, robust and accurate. The new tool can handle vectors of a user-specified dimension and can suppress noise effectively, with little loss of important signals, by employing dimensionality reduction. Furthermore, our approach utilizes the support vector machine for a more accurate classification. According to the results of our thorough experiments, the proposed new approach outperformed the original tool by 20.13% and 13.42% with respect to true and false positive rates, respectively.
蛋白质的功能和结构知识对于药物发现和开发至关重要。斯坦福大学开发的 FEATURE 系统是一种用于描述和分类蛋白质中局部环境的有效工具。FEATURE 使用固定维数的向量来表示残基周围的物理化学性质。通过使用朴素贝叶斯分类器对这些向量进行分类,可以识别功能位点和非功能位点。在本文中,我们通过几种方式改进了 FEATURE 框架,使其更加灵活、稳健和准确。新工具可以处理用户指定维数的向量,并通过采用降维技术有效抑制噪声,而不会丢失重要信号。此外,我们的方法还利用支持向量机进行更准确的分类。根据我们全面的实验结果,与原始工具相比,所提出的新方法在真阳性率和假阳性率方面分别提高了 20.13%和 13.42%。