Suppr超能文献

碳标记的吡嗪酰胺

C-Labeled pyrazinamide

作者信息

Shan Liang

机构信息

National Center for Biotechnology Information, NLM, NIH

Abstract

Pyrazinamide (PZA) is a prodrug used in the treatment of (MTB) infection. PZA is converted to its active form, pyrazinoic acid, by the pyrazinamidase of MTB at the acidic site of infection. Pyrazinoic acid inhibits the type 1 fatty acid synthases of the bacilli. Accumulation of pyrazinoic acid is also thought to disrupt the membrane potential and interfere with the energy production necessary for survival of MTB. Mutations of the pyrazinamidase gene are responsible for the development of PZA resistance. PZA is largely bacteriostatic. PZA labeled with C ([C]PZA) has been generated by Liu et al. for and real-time analysis of the PZA pharmacokinetics (PK) and biodistribution with positron emission tomography (PET) (1). The half-life of C is 20.4 min. The PK and biodistribution of a novel drug are traditionally determined with blood and tissue sampling and/or autoradiography. Despite high workload and huge investment in drug development, only 8% of the drugs entering clinical trials today reach the market, as estimated by the U.S. Food and Drug Administration. One main reason for this attrition is insufficient exploration of the drug–target interaction (1). Traditional methods are inadequate to answer questions such as whether a drug reaches the target, how the drug interacts with its targets, and how the drug modifies the diseases. Because of the high resolution and sensitivity of newly developed imaging techniques, investigators have become increasingly interested in addressing these issues (2, 3). In the case of PET imaging, most small molecules can now be efficiently labeled with C or with F at >37 GBq/µmol (1 Ci/μmol), and they can be detected with PET in the nanomolar to picomolar concentration range (4-6). Consequently, a sufficient signal for imaging can be obtained even though the total amount of a radiotracer administered systemically is extremely low (known as microdosing, typically <1 μg for humans). Microdosing is particularly valuable for evaluating tissue exposure in the early phase of drug development when the full-range toxicology is not yet available (7, 8). Increasing evidence has demonstrated the efficiency of PET imaging in obtaining quantitative information on drug PK and distribution in various tissues including brain; confirming drug binding with targets and elucidating the relationship between occupancy and target expression/function ; assessing drug passage across the blood–brain barrier (BBB) and ensuring sufficient exposure to brain for central nervous system drugs; and dissecting the modifying effects of drugs on diseases (2, 4, 5). The current treatment regime for drug-sensitive TB involves the use of rifampicin (RIF), isoniazid (INH), PZA, and ethambutol or streptomycin for two months, followed by four months of continued dosing with INH and RIF (9, 10). This regime is primarily based on PK studies in serum and on efficacy of treatment. The efficacy of each drug for different types of TB such as brain TB and the drug distribution in each compartment of an organ are not well understood. To provide direct insights into these drugs, Liu et al. labeled INH, RIF, and PZA with C and used PET to investigate their PK and biodistribution in baboons (1). Liu et al. found that the organ distribution and BBB penetration of each drug differed greatly. [C]PZA can easily penetrate the BBB (PZA > INH > RIF); however, the PZA concentrations in the cerebrospinal fluid and brain were only slightly higher than its minimum inhibitory concentration (MIC) value against TB. This chapter summarizes the data obtained by Liu et al. regarding [C]PZA. The data obtained with regard to [C]RIF and [C]INH are described in the MICAD chapters on [C]RIF and [C]INH, respectively.

摘要

吡嗪酰胺(PZA)是一种用于治疗结核分枝杆菌(MTB)感染的前体药物。PZA在感染的酸性部位被MTB的吡嗪酰胺酶转化为其活性形式吡嗪酸。吡嗪酸抑制杆菌的1型脂肪酸合成酶。吡嗪酸的积累也被认为会破坏膜电位并干扰MTB生存所需的能量产生。吡嗪酰胺酶基因的突变是PZA耐药性产生的原因。PZA在很大程度上具有抑菌作用。Liu等人制备了用碳-11标记的PZA([¹¹C]PZA),用于通过正电子发射断层扫描(PET)对PZA的药代动力学(PK)和生物分布进行体内和实时分析(1)。¹¹C的半衰期为20.4分钟。传统上,一种新药的PK和生物分布是通过血液和组织采样及/或放射自显影来确定的。据美国食品药品监督管理局估计,尽管在药物开发方面工作量巨大且投资不菲,但如今进入临床试验的药物只有8%能上市。这种淘汰率的一个主要原因是对药物-靶点相互作用的探索不足(1)。传统方法不足以回答诸如药物是否到达靶点、药物如何与其靶点相互作用以及药物如何改变疾病等问题。由于新开发的成像技术具有高分辨率和高灵敏度,研究人员对解决这些问题越来越感兴趣(2,3)。就PET成像而言,现在大多数小分子都可以用¹¹C或¹⁸F以>37 GBq/µmol(1 Ci/μmol)的效率进行标记,并且可以在纳摩尔到皮摩尔的浓度范围内用PET进行检测(4 - 6)。因此,即使全身给药的放射性示踪剂总量极低(称为微剂量给药,对人类通常<1 μg),也能获得足够的成像信号。微剂量给药对于在药物开发早期阶段评估组织暴露特别有价值,此时全面的毒理学数据尚未可得(7,8)。越来越多的证据表明PET成像在获取关于药物PK以及在包括脑在内的各种组织中的分布的定量信息方面具有有效性;确认药物与靶点的结合并阐明占有率与靶点表达/功能之间的关系;评估药物穿过血脑屏障(BBB)的情况并确保中枢神经系统药物在脑中的充分暴露;以及剖析药物对疾病的修饰作用(2,4,5)。目前对药物敏感型结核病的治疗方案包括使用利福平(RIF)、异烟肼(INH)、PZA和乙胺丁醇或链霉素治疗两个月,随后继续用INH和RIF给药四个月(9,10)。该方案主要基于血清中的PK研究和治疗效果。每种药物对不同类型结核病(如脑结核)的疗效以及在器官各部分的药物分布尚不清楚。为了直接深入了解这些药物,Liu等人用¹¹C标记了INH、RIF和PZA,并使用PET研究它们在狒狒体内的PK和生物分布(1)。Liu等人发现每种药物的器官分布和BBB穿透情况差异很大。[¹¹C]PZA能够轻松穿透BBB(PZA > INH > RIF);然而,脑脊液和脑中的PZA浓度仅略高于其对结核的最低抑菌浓度(MIC)值。本章总结了Liu等人关于[¹¹C]PZA获得的数据。关于[¹¹C]RIF和[¹¹C]INH获得的数据分别在关于[¹¹C]RIF和[¹¹C]INH的MICAD章节中描述。

相似文献

6
[Prevalence and transmission of pyrazinamide-resistant in Hunan Province,China].[中国湖南省吡嗪酰胺耐药的流行情况与传播]
Zhonghua Jie He He Hu Xi Za Zhi. 2022 Jul 12;45(7):677-685. doi: 10.3760/cma.j.cn112147-20211219-00904.
10
Prevalence of Pyrazinamide Resistance in Khyber Pakhtunkhwa, Pakistan.巴基斯坦开伯尔-普赫图赫瓦省吡嗪酰胺耐药情况
Microb Drug Resist. 2018 Nov;24(9):1417-1421. doi: 10.1089/mdr.2017.0234. Epub 2018 Mar 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验