Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America.
Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, United States of America.
PLoS Med. 2019 Apr 2;16(4):e1002773. doi: 10.1371/journal.pmed.1002773. eCollection 2019 Apr.
The sites of mycobacterial infection in the lungs of tuberculosis (TB) patients have complex structures and poor vascularization, which obstructs drug distribution to these hard-to-reach and hard-to-treat disease sites, further leading to suboptimal drug concentrations, resulting in compromised TB treatment response and resistance development. Quantifying lesion-specific drug uptake and pharmacokinetics (PKs) in TB patients is necessary to optimize treatment regimens at all infection sites, to identify patients at risk, to improve existing regimens, and to advance development of novel regimens. Using drug-level data in plasma and from 9 distinct pulmonary lesion types (vascular, avascular, and mixed) obtained from 15 hard-to-treat TB patients who failed TB treatments and therefore underwent lung resection surgery, we quantified the distribution and the penetration of 7 major TB drugs at these sites, and we provide novel tools for treatment optimization.
A total of 329 plasma- and 1,362 tissue-specific drug concentrations from 9 distinct lung lesion types were obtained according to optimal PK sampling schema from 15 patients (10 men, 5 women, aged 23 to 58) undergoing lung resection surgery (clinical study NCT00816426 performed in South Korea between 9 June 2010 and 24 June 2014). Seven major TB drugs (rifampin [RIF], isoniazid [INH], linezolid [LZD], moxifloxacin [MFX], clofazimine [CFZ], pyrazinamide [PZA], and kanamycin [KAN]) were quantified. We developed and evaluated a site-of-action mechanistic PK model using nonlinear mixed effects methodology. We quantified population- and patient-specific lesion/plasma ratios (RPLs), dynamics, and variability of drug uptake into each lesion for each drug. CFZ and MFX had higher drug exposures in lesions compared to plasma (median RPL 2.37, range across lesions 1.26-22.03); RIF, PZA, and LZD showed moderate yet suboptimal lesion penetration (median RPL 0.61, range 0.21-2.4), while INH and KAN showed poor tissue penetration (median RPL 0.4, range 0.03-0.73). Stochastic PK/pharmacodynamic (PD) simulations were carried out to evaluate current regimen combinations and dosing guidelines in distinct patient strata. Patients receiving standard doses of RIF and INH, who are of the lower range of exposure distribution, spent substantial periods (>12 h/d) below effective concentrations in hard-to-treat lesions, such as caseous lesions and cavities. Standard doses of INH (300 mg) and KAN (1,000 mg) did not reach therapeutic thresholds in most lesions for a majority of the population. Drugs and doses that did reach target exposure in most subjects include 400 mg MFX and 100 mg CFZ. Patients with cavitary lesions, irrespective of drug choice, have an increased likelihood of subtherapeutic concentrations, leading to a higher risk of resistance acquisition while on treatment. A limitation of this study was the small sample size of 15 patients, performed in a unique study population of TB patients who failed treatment and underwent lung resection surgery. These results still need further exploration and validation in larger and more diverse cohorts.
Our results suggest that the ability to reach and maintain therapeutic concentrations is both lesion and drug specific, indicating that stratifying patients based on disease extent, lesion types, and individual drug-susceptibility profiles may eventually be useful for guiding the selection of patient-tailored drug regimens and may lead to improved TB treatment outcomes. We provide a web-based tool to further explore this model and results at http://saviclab.org/tb-lesion/.
肺结核(TB)患者肺部的分枝杆菌感染部位结构复杂,血管化程度差,这阻碍了药物到达这些难以触及和难以治疗的疾病部位,进一步导致药物浓度不理想,从而影响了 TB 治疗效果和耐药性的发展。在所有感染部位优化治疗方案、识别高危患者、改进现有方案以及推进新型方案的开发,都需要量化 TB 患者特定病变部位的药物摄取和药代动力学(PK)。我们从 15 名因 TB 治疗失败而接受肺切除术的难治性 TB 患者的 9 种不同肺部病变类型(血管性、非血管性和混合性)的血浆和 1362 个组织特异性药物浓度中,使用药物水平数据,对 7 种主要 TB 药物在这些部位的分布和渗透情况进行了量化,并为治疗优化提供了新的工具。
根据来自 15 名(10 名男性,5 名女性,年龄 23 至 58 岁)接受肺切除术患者的最佳 PK 采样方案(2010 年 6 月 9 日至 2014 年 6 月 24 日在韩国进行的临床研究 NCT00816426),从 9 种不同的肺部病变类型中获得了 329 个血浆和 1362 个组织特异性药物浓度。对 7 种主要 TB 药物(利福平[RIF]、异烟肼[INH]、利奈唑胺[LZD]、莫西沙星[MFX]、氯法齐明[CFZ]、吡嗪酰胺[PZA]和卡那霉素[KAN])进行了定量分析。我们使用非线性混合效应方法开发并评估了一种作用部位的 PK 模型。我们量化了每种药物进入每个病变部位的群体和患者特异性病变/血浆比(RPL)、动力学和变异性。CFZ 和 MFX 在病变部位的药物暴露量高于血浆(中位数 RPL 2.37,病变部位范围 1.26-22.03);RIF、PZA 和 LZD 显示出中等但不理想的病变穿透性(中位数 RPL 0.61,范围 0.21-2.4),而 INH 和 KAN 显示出较差的组织穿透性(中位数 RPL 0.4,范围 0.03-0.73)。进行了随机 PK/药效(PD)模拟,以评估不同患者群体中当前的治疗方案组合和剂量指南。接受 RIF 和 INH 标准剂量的患者,其暴露分布范围较低,在硬治疗病变(如干酪样病变和空洞)中,有相当长的时间(>12 小时/天)低于有效浓度。大多数人群中,INH(300mg)和 KAN(1000mg)的标准剂量在大多数病变中未达到治疗阈值。大多数患者达到目标暴露的药物和剂量包括 400mg MFX 和 100mg CFZ。无论药物选择如何,有空洞病变的患者都有获得亚治疗浓度的可能性增加,从而在治疗期间增加获得耐药性的风险。这项研究的一个局限性是只有 15 名患者的样本量较小,这些患者是在治疗失败并接受肺切除术的 TB 患者的独特研究人群中进行的。这些结果仍需要在更大和更多样化的队列中进一步探索和验证。
我们的研究结果表明,达到和维持治疗浓度的能力与病变和药物特异性有关,这表明根据疾病范围、病变类型和个体药物敏感性特征对患者进行分层,可能最终有助于指导选择适合患者的个体化药物方案,并可能改善 TB 治疗结果。我们提供了一个基于网络的工具,以进一步探索该模型和结果,网址为 http://saviclab.org/tb-lesion/。