Suppr超能文献

深入土壤探究:土壤 CO2 产生和排放的生物物理控制和季节性滞后。

Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux.

机构信息

Department of Environmental Science, Policy, and Management, 137 Mulford Hall, University of California, Berkeley, California 94720, USA.

出版信息

Ecol Appl. 2010 Sep;20(6):1569-82. doi: 10.1890/09-0693.1.

Abstract

We seek to understand how biophysical factors such as soil temperature (Ts), soil moisture (theta), and gross primary production (GPP) influence CO2 fluxes across terrestrial ecosystems. Recent advancements in automated measurements and remote-sensing approaches have provided time series in which lags and relationships among variables can be explored. The purpose of this study is to present new applications of continuous measurements of soil CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in Ts, theta, and GPP (derived from NASA's moderate-resolution imaging spectroradiometer [MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and used continuous measurements at a daily timescale across four vegetation types at 13 study sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, theta, and GPP and (2) interactions and relationships between CO2 fluxes with Ts, theta, and GPP. Mean annual Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30% of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or GPP provide insights into the role of plant phenology and information relevant about possible timing of controls of autotrophic and heterotrophic processes. The influences of biophysical factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil CO2 flux measurement networks provides a unique opportunity for extended investigations into F0 and Ps processes in the near future.

摘要

我们试图了解土壤温度(Ts)、土壤湿度(theta)和总初级生产力(GPP)等生物物理因素如何影响陆地生态系统的 CO2 通量。自动化测量和遥感方法的最新进展提供了时间序列,可从中探索变量之间的滞后关系和关系。本研究的目的是介绍土壤 CO2 排放(F0)和土壤 CO2 浓度测量的连续测量的新应用。在这里,我们探讨了 Ts、theta 和 GPP(源自美国宇航局的中等分辨率成像光谱仪[MODIS])的变化如何影响 F0 和土壤 CO2 产生(Ps)。我们专注于季节性变化,并在 13 个研究点的四个植被类型上以每日时间尺度使用连续测量来量化:(1)土壤 CO2 通量与 Ts、theta 和 GPP 之间季节性滞后的差异,以及(2)CO2 通量与 Ts、theta 和 GPP 之间的相互作用和关系。年平均 Ts 并不能解释植被类型之间的年 F0 和 Ps,但 GPP 分别解释了 73%和 30%的变异。我们有证据表明,土壤 CO2 通量与 Ts 或 GPP 之间的滞后提供了有关植物物候学作用和有关自动和异养过程控制可能时间的信息。调节每日 F0 和 Ps 的生物物理因素的影响在植被类型之间有所不同,但 GPP 是解释土壤 CO2 通量的主要变量。长期自动化土壤 CO2 通量测量网络的出现为未来对 F0 和 Ps 过程进行扩展研究提供了独特的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验