Suppr超能文献

磺酰胺硼酸类化合物作为β-内酰胺酶抑制剂的设计、合成、晶体结构和抗菌活性研究。

Design, synthesis, crystal structures, and antimicrobial activity of sulfonamide boronic acids as β-lactamase inhibitors.

机构信息

Department of Pharmaceutical Chemistry, Byers Hall, University of California San Francisco, 1700 4th Street, San Francisco, California 94158, United States.

出版信息

J Med Chem. 2010 Nov 11;53(21):7852-63. doi: 10.1021/jm101015z.

Abstract

We investigated a series of sulfonamide boronic acids that resulted from the merging of two unrelated AmpC β-lactamase inhibitor series. The new boronic acids differed in the replacement of the canonical carboxamide, found in all penicillin and cephalosporin antibiotics, with a sulfonamide. Surprisingly, these sulfonamides had a highly distinct structure-activity relationship from the previously explored carboxamides, high ligand efficiencies (up to 0.91), and K(i) values down to 25 nM and up to 23 times better for smaller analogues. Conversely, K(i) values were 10-20 times worse for larger molecules than in the carboxamide congener series. X-ray crystal structures (1.6-1.8 Å) of AmpC with three of the new sulfonamides suggest that this altered structure-activity relationship results from the different geometry and polarity of the sulfonamide versus the carboxamide. The most potent inhibitor reversed β-lactamase-mediated resistance to third generation cephalosporins, lowering their minimum inhibitory concentrations up to 32-fold in cell culture.

摘要

我们研究了一系列磺酰胺硼酸,这些硼酸是将两个不相关的 AmpCβ-内酰胺酶抑制剂系列合并而成的。这些新的硼酸在取代所有青霉素和头孢菌素抗生素中都存在的经典羧酰胺方面有所不同,用磺酰胺取代。令人惊讶的是,这些磺酰胺与之前探索的羧酰胺具有高度不同的结构-活性关系,配体效率高(高达 0.91),K(i)值低至 25 nM,对于较小的类似物,活性提高了 23 倍。相反,对于较大的分子,K(i)值比在羧酰胺同类物系列中差 10-20 倍。与三种新磺酰胺的 AmpC 的 X 射线晶体结构(1.6-1.8 Å)表明,这种改变的结构-活性关系是由于磺酰胺与羧酰胺的不同几何形状和极性所致。最有效的抑制剂逆转了β-内酰胺酶介导的对第三代头孢菌素的耐药性,使它们在细胞培养中的最低抑菌浓度降低了 32 倍。

相似文献

3
Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase.
J Med Chem. 1998 Nov 5;41(23):4577-86. doi: 10.1021/jm980343w.
4
Nanomolar inhibitors of AmpC beta-lactamase.
J Am Chem Soc. 2003 Jan 22;125(3):685-95. doi: 10.1021/ja0288338.
5
α-Triazolylboronic Acids: A Promising Scaffold for Effective Inhibitors of KPCs.
ChemMedChem. 2020 Jul 20;15(14):1283-1288. doi: 10.1002/cmdc.202000126. Epub 2020 Jun 22.
6
2-Carboxyquinoline Boronic Acids as Highly Potent KPC Inhibitors.
ChemMedChem. 2025 Apr 1;20(7):e202400901. doi: 10.1002/cmdc.202400901. Epub 2025 Jan 14.
8
Structure-based approach for binding site identification on AmpC beta-lactamase.
J Med Chem. 2002 Jul 18;45(15):3222-34. doi: 10.1021/jm020002p.
9
Structure-based optimization of cephalothin-analogue boronic acids as beta-lactamase inhibitors.
Bioorg Med Chem. 2008 Feb 1;16(3):1195-205. doi: 10.1016/j.bmc.2007.10.075. Epub 2007 Nov 7.
10
Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative.
J Med Chem. 2014 Jun 26;57(12):5449-58. doi: 10.1021/jm5006572. Epub 2014 Jun 16.

引用本文的文献

1
Discovery of Boronic Acids-Based β-Lactamase Inhibitors Through In Situ Click Chemistry.
Int J Mol Sci. 2025 Apr 28;26(9):4182. doi: 10.3390/ijms26094182.
2
The impact of library size and scale of testing on virtual screening.
Nat Chem Biol. 2025 Jan 3. doi: 10.1038/s41589-024-01797-w.
3
Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2435365. doi: 10.1080/14756366.2024.2435365. Epub 2024 Dec 23.
4
α-Triazolylboronic Acids: A Novel Scaffold to Target FLT3 in AML.
ChemMedChem. 2025 Jan 2;20(1):e202400622. doi: 10.1002/cmdc.202400622. Epub 2024 Nov 9.
5
The impact of Library Size and Scale of Testing on Virtual Screening.
bioRxiv. 2024 Jul 11:2024.07.08.602536. doi: 10.1101/2024.07.08.602536.
6
Borylative transition metal-free couplings of vinyl iodides with various nucleophiles, alkenes or alkynes.
Chem Sci. 2023 Dec 29;15(5):1672-1678. doi: 10.1039/d3sc06131k. eCollection 2024 Jan 31.
7
Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors.
Molecules. 2023 Oct 31;28(21):7362. doi: 10.3390/molecules28217362.
9
Class C β-Lactamases: Molecular Characteristics.
Clin Microbiol Rev. 2022 Sep 21;35(3):e0015021. doi: 10.1128/cmr.00150-21. Epub 2022 Apr 18.
10
Structural approaches to pathway-specific antimicrobial agents.
Transl Res. 2020 Jun;220:114-121. doi: 10.1016/j.trsl.2020.02.001. Epub 2020 Feb 6.

本文引用的文献

1
Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition.
Drugs. 2010 Apr 16;70(6):651-79. doi: 10.2165/11318430-000000000-00000.
2
4,7-Dichloro benzothien-2-yl sulfonylaminomethyl boronic acid: first boronic acid-derived beta-lactamase inhibitor with class A, C, and D activity.
Bioorg Med Chem Lett. 2010 Apr 15;20(8):2622-4. doi: 10.1016/j.bmcl.2010.02.065. Epub 2010 Feb 19.
3
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
4
Three decades of beta-lactamase inhibitors.
Clin Microbiol Rev. 2010 Jan;23(1):160-201. doi: 10.1128/CMR.00037-09.
5
beta-Lactamases- the Threat Renews.
Curr Protein Pept Sci. 2009 Oct;10(5):397-400. doi: 10.2174/138920309789351994.
6
Re-examining the role of Lys67 in class C beta-lactamase catalysis.
Protein Sci. 2009 Mar;18(3):662-9. doi: 10.1002/pro.60.
7
AmpC beta-lactamases.
Clin Microbiol Rev. 2009 Jan;22(1):161-82, Table of Contents. doi: 10.1128/CMR.00036-08.
8
Rational antibiotic therapy and the position of ampicillin/sulbactam.
Int J Antimicrob Agents. 2008 Jul;32(1):10-28. doi: 10.1016/j.ijantimicag.2008.02.004. Epub 2008 Jun 6.
9
Structure-based optimization of cephalothin-analogue boronic acids as beta-lactamase inhibitors.
Bioorg Med Chem. 2008 Feb 1;16(3):1195-205. doi: 10.1016/j.bmc.2007.10.075. Epub 2007 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验