Department of Electrical Engineering & Computer Science, University of Kansas, Lawrence, KS 66045, USA.
BMC Bioinformatics. 2010 Oct 7;11 Suppl 6(Suppl 6):S27. doi: 10.1186/1471-2105-11-S6-S27.
Dynamic Bayesian Networks (DBNs) are widely used in regulatory network structure inference with gene expression data. Current methods assumed that the underlying stochastic processes that generate the gene expression data are stationary. The assumption is not realistic in certain applications where the intrinsic regulatory networks are subject to changes for adapting to internal or external stimuli.
In this paper we investigate a novel non-stationary DBNs method with a potential regulator detection technique and a flexible lag choosing mechanism. We apply the approach for the gene regulatory network inference on three non-stationary time series data. For the Macrophages and Arabidopsis data sets with the reference networks, our method shows better network structure prediction accuracy. For the Drosophila data set, our approach converges faster and shows a better prediction accuracy on transition times. In addition, our reconstructed regulatory networks on the Drosophila data not only share a lot of similarities with the predictions of the work of other researchers but also provide many new structural information for further investigation.
Compared with recent proposed non-stationary DBNs methods, our approach has better structure prediction accuracy By detecting potential regulators, our method reduces the size of the search space, hence may speed up the convergence of MCMC sampling.
动态贝叶斯网络(DBNs)广泛应用于基于基因表达数据的调控网络结构推断。目前的方法假设生成基因表达数据的潜在随机过程是稳定的。在某些应用中,这种假设并不现实,因为内在的调控网络需要适应内部或外部的刺激而发生变化。
在本文中,我们研究了一种具有潜在调控器检测技术和灵活滞后选择机制的新型非平稳 DBNs 方法。我们将该方法应用于三个非平稳时间序列数据的基因调控网络推断。对于具有参考网络的巨噬细胞和拟南芥数据集,我们的方法显示出更好的网络结构预测准确性。对于果蝇数据集,我们的方法收敛速度更快,在转移时间上具有更好的预测准确性。此外,我们在果蝇数据上重建的调控网络不仅与其他研究人员的预测有很多相似之处,而且为进一步研究提供了许多新的结构信息。
与最近提出的非平稳 DBNs 方法相比,我们的方法具有更好的结构预测准确性。通过检测潜在的调控器,我们的方法减少了搜索空间的大小,从而可能加快 MCMC 采样的收敛速度。