Suppr超能文献

使用动态贝叶斯网络方法推断拟南芥根中的基因调控网络。

Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach.

作者信息

de Luis Balaguer Maria Angels, Sozzani Rosangela

机构信息

Department of Plant and Microbial Biology, North Carolina State University, 2552A Thomas Hall, Raleigh, NC, 27695, USA.

出版信息

Methods Mol Biol. 2017;1629:331-348. doi: 10.1007/978-1-4939-7125-1_21.

Abstract

Gene regulatory network (GRN) models have been shown to predict and represent interactions among sets of genes. Here, we first show the basic steps to implement a simple but computationally efficient algorithm to infer GRNs based on dynamic Bayesian networks (DBNs), and we then explain how to approximate DBN-based GRN models with continuous models. In addition, we show a MATLAB implementation of the key steps of this method, which we use to infer an Arabidopsis root GRN.

摘要

基因调控网络(GRN)模型已被证明能够预测和表示基因集之间的相互作用。在此,我们首先展示基于动态贝叶斯网络(DBN)推断基因调控网络的简单但计算效率高的算法的基本实现步骤,然后解释如何用连续模型近似基于DBN的基因调控网络模型。此外,我们展示了该方法关键步骤的MATLAB实现,并用其推断拟南芥根基因调控网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验