de Luis Balaguer Maria Angels, Sozzani Rosangela
Department of Plant and Microbial Biology, North Carolina State University, 2552A Thomas Hall, Raleigh, NC, 27695, USA.
Methods Mol Biol. 2017;1629:331-348. doi: 10.1007/978-1-4939-7125-1_21.
Gene regulatory network (GRN) models have been shown to predict and represent interactions among sets of genes. Here, we first show the basic steps to implement a simple but computationally efficient algorithm to infer GRNs based on dynamic Bayesian networks (DBNs), and we then explain how to approximate DBN-based GRN models with continuous models. In addition, we show a MATLAB implementation of the key steps of this method, which we use to infer an Arabidopsis root GRN.
基因调控网络(GRN)模型已被证明能够预测和表示基因集之间的相互作用。在此,我们首先展示基于动态贝叶斯网络(DBN)推断基因调控网络的简单但计算效率高的算法的基本实现步骤,然后解释如何用连续模型近似基于DBN的基因调控网络模型。此外,我们展示了该方法关键步骤的MATLAB实现,并用其推断拟南芥根基因调控网络。