Suppr超能文献

灌注 CT 评估的血脑屏障通透性可预测急性缺血性脑卒中的症状性出血性转化和恶性水肿。

Blood-brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke.

机构信息

Department of Radiology, Neuroradiology Section, Neurovascular Service, University of California, San Francisco, California, USA.

出版信息

AJNR Am J Neuroradiol. 2011 Jan;32(1):41-8. doi: 10.3174/ajnr.A2244. Epub 2010 Oct 14.

Abstract

BACKGROUND AND PURPOSE

SHT and ME are feared complications in patients with acute ischemic stroke. They occur >10 times more frequently in tPA-treated versus placebo-treated patients. Our goal was to evaluate the sensitivity and specificity of admission BBBP measurements derived from PCT in predicting the development of SHT and ME in patients with acute ischemic stroke.

MATERIALS AND METHODS

We retrospectively analyzed a dataset consisting of 32 consecutive patients with acute ischemic stroke with appropriate admission and follow-up imaging. We calculated admission BBBP by using delayed-acquisition PCT data and the Patlak model. Collateral flow was assessed on the admission CTA, while recanalization and reperfusion were assessed on the follow-up CTA and PCT, respectively. SHT and ME were defined according to ECASS III criteria. Clinical data were obtained from chart review. In our univariate and forward selection-based multivariate analysis for predictors of SHT and ME, we incorporated both clinical and imaging variables, including age, admission NIHSS score, admission blood glucose level, admission blood pressure, time from symptom onset to scanning, treatment type, admission PCT-defined infarct volume, admission BBBP, collateral flow, recanalization, and reperfusion. Optimal sensitivity and specificity for SHT and ME prediction were calculated by using ROC analysis.

RESULTS

In our sample of 32 patients, 3 developed SHT and 3 developed ME. Of the 3 patients with SHT, 2 received IV tPA, while 1 received IA tPA and treatment with the Merci device; of the 3 patients with ME, 2 received IV tPA, while 1 received IA tPA and treatment with the Merci device. Admission BBBP measurements above the threshold were 100% sensitive and 79% specific in predicting SHT and ME. Furthermore, all patients with SHT and ME--and only those with SHT and ME--had admission BBBP measurements above the threshold, were older than 65 years of age, and received tPA. Admission BBBP, age, and tPA were the independent predictors of SHT and ME in our forward selection-based multivariate analysis. Of these 3 variables, only BBBP measurements and age were known before making the decision of administering tPA and thus are clinically meaningful.

CONCLUSIONS

Admission BBBP, a pretreatment measurement, was 100% sensitive and 79% specific in predicting SHT and ME.

摘要

背景与目的

SHT 和 ME 是急性缺血性脑卒中患者中令人担忧的并发症。与安慰剂治疗相比,接受 tPA 治疗的患者中 SHT 和 ME 的发生率高出 10 倍以上。我们的目标是评估 PCT 获得的入院时 BBBP 测量值在预测急性缺血性脑卒中患者 SHT 和 ME 发展方面的敏感性和特异性。

材料与方法

我们回顾性分析了一组由 32 例连续急性缺血性脑卒中患者组成的数据集,这些患者均有适当的入院和随访影像学检查。我们使用延迟采集的 PCT 数据和 Patlak 模型计算入院时 BBBP。在入院 CTA 上评估侧支循环血流,在随访 CTA 和 PCT 上分别评估再通和再灌注。SHT 和 ME 根据 ECASS III 标准定义。临床数据来自病历回顾。在我们针对 SHT 和 ME 预测因素的单变量和基于向前选择的多变量分析中,我们纳入了临床和影像学变量,包括年龄、入院 NIHSS 评分、入院血糖水平、入院血压、症状发作至扫描时间、治疗类型、入院时 PCT 定义的梗死体积、入院 BBBP、侧支循环、再通和再灌注。通过 ROC 分析计算 SHT 和 ME 预测的最佳敏感性和特异性。

结果

在我们的 32 例患者样本中,有 3 例发生 SHT,3 例发生 ME。3 例 SHT 患者中,2 例接受 IV tPA 治疗,1 例接受 IA tPA 联合 Merci 装置治疗;3 例 ME 患者中,2 例接受 IV tPA 治疗,1 例接受 IA tPA 联合 Merci 装置治疗。入院时 BBBP 测量值超过阈值时,SHT 和 ME 的预测敏感性为 100%,特异性为 79%。此外,所有发生 SHT 和 ME 的患者(仅发生 SHT 和 ME 的患者)的入院时 BBBP 测量值均超过阈值,年龄大于 65 岁,且接受了 tPA 治疗。入院 BBBP、年龄和 tPA 是我们基于向前选择的多变量分析中 SHT 和 ME 的独立预测因素。在这 3 个变量中,只有 BBBP 测量值和年龄在决定使用 tPA 之前就已知道,因此具有临床意义。

结论

入院时 BBBP 是一种治疗前的测量值,在预测 SHT 和 ME 方面具有 100%的敏感性和 79%的特异性。

相似文献

引用本文的文献

5
Novel advanced imaging techniques for cerebral oedema.用于脑水肿的新型先进成像技术。
Front Neurol. 2024 Jan 31;15:1321424. doi: 10.3389/fneur.2024.1321424. eCollection 2024.

本文引用的文献

5
Role of aquaporin-4 in cerebral edema and stroke.水通道蛋白-4在脑水肿和中风中的作用。
Handb Exp Pharmacol. 2009(190):159-70. doi: 10.1007/978-3-540-79885-9_7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验