Vasseur M, Frangne R, Caüzac M, Mahmood A, Alvarado F
Centre de Recherches sur la Nutrition, Centre National de la Recherche Scientifique, Meudon, France.
J Enzyme Inhib. 1990;4(1):15-26. doi: 10.3109/14756369009030384.
Tris and two of its hydroxylated amine analogs were examined in a metal-free, universal n-butylamine buffer, for their interaction with intestinal brush border sucrase. Our recent three-proton-families model (Vasseur, van Melle, Frangne and Alvarado (1988) Biochem. J., 251, 667-675) has provided the sucrase pK values necessary to interpret the present work. At pH 5.2, 2-amino-2-methyl-l-propanol (PM) causes activation whereas Tris has a concentration-dependent biphasic effect, first causing activation, then fully competitive inhibition. The amine species causing activation is the protonated, cationic form. The difference between the two amines is related to the fact that Tris has a much lower pKa value than PM (respectively, 8.2 and 9.8). Even at pH 5.2, Tris (but not PM) exists as a significant proportion of the free base which, by inhibiting the enzyme fully competitively, overshadows the activating effect of the cationic, protonated amine. Above pH 6.8, both Tris and PM act as fully competitive inhibitors. These inhibitions increase monotonically between pH 6.5 and 8.0 but, above pH 8, inhibition by 2.5 mM Tris tends to diminish whereas inhibition by 40 mM PM increases abruptly to be essentially complete at pH 9.3 and above. As pH increases from 7.6 to 9.0, the apparent affinity of the free amine bases decreases whereas that of the cationic, protonated amines, increases. In this way, the protonated amines replace their corresponding free bases as the most potent inhibitors at high pH. The pH-dependent inhibition by 300 mM Li+ is essentially complete at pH 8, independent of the presence or absence of either 2.5 mM Tris or 40 mM PM. Even at pH 7.6, an excess (300 mM) of Li+ causes significant increases in the apparent Ki value of each Tris, PD (2-amino-2-methyl-1-3-propanediol) and PM, suggesting the possibility of a relation between the effects of Li+ and those of the hydroxylated amines which in fact are mutually exclusive inhibitors. The inhibitory results are interpreted in terms of a mechanistic model in which the free bases bind at two distinct sites in the enzyme's active center. Binding at the glucosyl sub-site occurs through the amine's free hydroxyl groups. This positioning facilitates the interaction between the lone electron pair of the deprotonated amino group with a proton donor in the enzyme's active center, characterized by a pK0 around 8.1. When this same group deprotonates, then the protonated amines acting as proton donors replace the free bases as the species giving fully competitive inhibition of sucrase.
在无金属的通用正丁胺缓冲液中,研究了Tris及其两种羟基化胺类似物与肠刷状缘蔗糖酶的相互作用。我们最近的三质子家族模型(Vasseur、van Melle、Frangne和Alvarado(1988年),《生物化学杂志》,251卷,667 - 675页)提供了解释本研究所需的蔗糖酶pK值。在pH 5.2时,2 - 氨基 - 2 - 甲基 - 1 - 丙醇(PM)引起激活,而Tris具有浓度依赖性的双相效应,首先引起激活,然后是完全竞争性抑制。引起激活的胺类物质是质子化的阳离子形式。这两种胺之间的差异与以下事实有关:Tris的pKa值比PM低得多(分别为8.2和9.8)。即使在pH 5.2时,Tris(而不是PM)仍以相当比例的游离碱形式存在,它通过完全竞争性抑制酶,掩盖了阳离子质子化胺的激活作用。在pH 6.8以上,Tris和PM都作为完全竞争性抑制剂起作用。这些抑制作用在pH 6.5至8.0之间单调增加,但在pH 8以上,2.5 mM Tris的抑制作用趋于减弱,而40 mM PM的抑制作用在pH 9.3及以上突然增加至基本完全抑制。随着pH从7.6增加到9.0,游离胺碱的表观亲和力降低,而阳离子质子化胺的表观亲和力增加。这样,在高pH下,质子化胺取代其相应的游离碱成为最有效的抑制剂。300 mM Li⁺的pH依赖性抑制在pH 8时基本完全,与2.5 mM Tris或40 mM PM的存在与否无关。即使在pH 7.6时,过量(300 mM)的Li⁺也会导致每种Tris、PD(2 - 氨基 - 2 - 甲基 - 1,3 - 丙二醇)和PM的表观Ki值显著增加,这表明Li⁺的作用与羟基化胺的作用之间可能存在关系,而实际上它们是相互排斥的抑制剂。根据一个机制模型对抑制结果进行了解释,在该模型中,游离碱在酶活性中心的两个不同位点结合。在葡萄糖基亚位点的结合是通过胺的游离羟基进行的。这种定位促进了去质子化氨基的孤对电子与酶活性中心中一个质子供体之间的相互作用,其特征pK0约为8.1。当这个相同的基团去质子化时,作为质子供体的质子化胺取代游离碱,成为对蔗糖酶产生完全竞争性抑制的物质。