Vasseur M, van Melle G, Alvarado F
Centre de Recherches sur la Nutrition, Centre National de la Recherche Scientifique, Meudon, France.
Biochem J. 1989 Feb 15;258(1):41-8. doi: 10.1042/bj2580041.
To define adequately enzyme activation/inhibition mechanisms as a function of pH, it is necessary to characterize the effector-induced pK shifts on both the free enzyme and on the enzyme-substrate complex. On the basis of our recent three-protons model for sucrase [Vasseur, van Melle, Frangne & Alvarado (1988) Biochem. J. 251, 667-675], we show how the 'fundamental' pK values, deduced from the classical double-logarithmic transformations, are insufficient to generate the required information. This insufficiency derives from the fact that, for sucrase, the acid ionization constant, K1, is a molecular constant that involves complex, V-type plus K-type, activatory and inhibitory kinetic effects. As a consequence, substrate-induced pK shifts cannot be interpreted correctly only by using the fundamental pK approach, because an unequal number of key protons is involved, depending on whether the free enzyme or the enzyme-substrate complex is considered. We demonstrate how this problem can be solved by using the 'theoretical' pK values, derived from the reciprocals of the Michaelis pH functions, i.e. Cha's fractional concentration factors. The procedure we propose, which is general, has the advantage of yielding all the macroscopic pK values for any given model, as calculated from the microscopic pK values. Furthermore, it permits predicting pK shifts as a function of [S] and/or [A] (where S is the substrate and A is the allosteric modifier), an objective that cannot be attained by using the double-logarithmic plot approach. Finally, we describe the relation existing between the fundamental and the theoretical pK values.
为了充分定义酶激活/抑制机制与pH的函数关系,有必要表征效应物诱导的游离酶和酶-底物复合物的pK位移。基于我们最近提出的蔗糖酶三质子模型[Vasseur, van Melle, Frangne & Alvarado (1988) Biochem. J. 251, 667 - 675],我们展示了从经典双对数变换推导得到的“基本”pK值如何不足以生成所需信息。这种不足源于这样一个事实,即对于蔗糖酶而言,酸电离常数K1是一个分子常数,它涉及复杂的V型加K型激活和抑制动力学效应。因此,仅使用基本pK方法无法正确解释底物诱导的pK位移,因为根据所考虑的是游离酶还是酶-底物复合物,涉及的关键质子数不相等。我们展示了如何通过使用从米氏pH函数的倒数(即查氏分数浓度因子)推导得到的“理论”pK值来解决这个问题。我们提出的这个通用程序的优点是,能从微观pK值计算出任何给定模型的所有宏观pK值。此外,它还能预测pK位移与[S]和/或[A](其中S是底物,A是变构调节剂)的函数关系,而这一目标是使用双对数图方法无法实现的。最后,我们描述了基本pK值和理论pK值之间存在的关系。