Cellular Neurobiology Research Branch (CTL, EL, TH, RA, SYT, JC, JFS, WJF), Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Baltimore, MD; the ScienCell Research Laboratories (JS), San Diego, CA, and the Gene Expression and Genomics Unit (KGB), IRP, National Institute on Aging (NIA), NIH, DHHS, Baltimore, MD.
J Addict Med. 2009 Dec;3(4):218-26. doi: 10.1097/ADM.0b013e318199d863.
Prenatal exposure to cocaine causes cytoarchitectural alterations in the developing neocortex. Previously, we reported that cocaine inhibits neural progenitor cell proliferation through oxidative endoplasmic reticulum stress and consequent down-regulation of cyclin A, whereas cyclin A expression was increased in astrocytes. In the present study, cell type-specific responses to cocaine were further explored.
Gene expression profiles were examined in five types of cells obtained from the human fetal cerebral cortex at 20 weeks gestation. Cells were treated with 100 µM cocaine in vitro for 24 hr, followed by gene expression analysis using a human neural/stem cell/drug abuse-focused cDNA array, with verification by quantitative real-time RT-PCR.
Cocaine influenced transcription of distinct categories of genes in a cell type-specific manner. Cocaine down-regulated cytoskeleton-related genes including ezrin, γ2 actin, α3d tubulin and α8 tubulin in neural and/or A2B5+ progenitor cells. In contrast, cocaine modulated immune and cell death-related genes in microglia and astrocytes. In microglia, cocaine up-regulated the immunoregulatory and pro-apoptotic genes IL-1β and BAX. In astrocytes, cocaine down-regulated the immune response gene glucocorticoid receptor and up-regulated the anti-apoptotic genes 14-3-3 ε and HVEM. Therefore, cell types comprising the developing neocortex show differential responses to cocaine.
These data suggest that cocaine causes cytoskeletal abnormalities leading to disturbances in neural differentiation and migration in progenitor cells, while altering immune and apoptotic responses in glia. Understanding the mechanisms of cocaine's effects on human CNS cells may help in the development of therapeutic strategies to prevent or ameliorate cocaine-induced impairments in fetal brain development.
可卡因对胎儿的暴露会导致皮质发育过程中的细胞结构发生改变。先前,我们报道可卡因通过氧化内质网应激和随后的细胞周期蛋白 A 下调来抑制神经祖细胞增殖,而细胞周期蛋白 A 在星形胶质细胞中的表达增加。在本研究中,进一步探讨了细胞类型对可卡因的反应。
在妊娠 20 周的人类胎儿大脑皮质中获得的五种类型的细胞中检查基因表达谱。将细胞在体外用 100μM 可卡因处理 24 小时,然后使用人类神经/干细胞/药物滥用特异性 cDNA 阵列进行基因表达分析,并通过实时定量 RT-PCR 进行验证。
可卡因以细胞类型特异性的方式影响不同类别的基因转录。可卡因下调神经和/或 A2B5+祖细胞中的细胞骨架相关基因,包括 ezrin、γ2 肌动蛋白、α3d 微管蛋白和α8 微管蛋白。相比之下,可卡因调节小胶质细胞和星形胶质细胞中的免疫和细胞死亡相关基因。在小胶质细胞中,可卡因上调免疫调节和促凋亡基因 IL-1β和 BAX。在星形胶质细胞中,可卡因下调免疫反应基因糖皮质激素受体并上调抗凋亡基因 14-3-3ε和 HVEM。因此,组成发育中的新皮质的细胞类型对可卡因表现出不同的反应。
这些数据表明,可卡因导致细胞骨架异常,从而导致祖细胞中的神经分化和迁移紊乱,同时改变胶质细胞中的免疫和凋亡反应。了解可卡因对人中枢神经系统细胞的影响机制可能有助于开发预防或改善可卡因引起的胎儿大脑发育损伤的治疗策略。