Department of Physics, University of Central Florida, Orlando, Florida 32816, United States.
J Am Chem Soc. 2010 Nov 10;132(44):15714-9. doi: 10.1021/ja106679z.
Tailoring the chemical reactivity of nanomaterials at the atomic level is one of the most important challenges in catalysis research. In order to achieve this elusive goal, fundamental understanding of the geometric and electronic structure of these complex systems at the atomic level must be obtained. This article reports the influence of the nanoparticle shape on the reactivity of Pt nanocatalysts supported on γ-Al(2)O(3). Nanoparticles with analogous average size distributions (∼0.8-1 nm), but with different shapes, synthesized by inverse micelle encapsulation, were found to display distinct reactivities for the oxidation of 2-propanol. A correlation between the number of undercoordinated atoms at the nanoparticle surface and the onset temperature for 2-propanol oxidation was observed, demonstrating that catalytic properties can be controlled through shape-selective synthesis.
在原子水平上调整纳米材料的化学反应性是催化研究中最重要的挑战之一。为了实现这一难以捉摸的目标,必须在原子水平上获得对这些复杂系统的几何和电子结构的基本理解。本文报道了纳米颗粒形状对负载在 γ-Al(2)O(3)上的 Pt 纳米催化剂反应性的影响。通过反胶束封装合成了具有类似平均粒径分布(约 0.8-1nm)但形状不同的纳米颗粒,发现它们对 2-丙醇的氧化具有明显不同的反应性。在纳米颗粒表面的配位不足原子数与 2-丙醇氧化的起始温度之间观察到相关性,这表明可以通过选择性合成来控制催化性能。