Vigil Toriana N, Spangler Leah C
University of Virginia, Charlottesville, Virginia 22903, United States.
Virginia Commonwealth University, Richmond, Virginia 23284, United States.
ACS Appl Nano Mater. 2024 Feb 29;7(16):18626-18654. doi: 10.1021/acsanm.3c04277. eCollection 2024 Aug 23.
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
生物矿化,即利用生物系统来生产无机材料,最近已成为可持续制造功能纳米材料的一种有吸引力的方法。依靠蛋白质或其他生物分子,生物矿化在环境温度和压力下发生,这为纳米颗粒合成提供了一种易于扩展、经济且环保的方法。生物矿化的纳米晶体正迅速接近适用于催化和光电子应用的质量水平,取代了使用昂贵传统路线合成的材料。在此,我们综述了利用生物矿化生产功能纳米晶体的当前发展状况,并将各种各样的生物合成途径提炼为两种主要方法:模板法和催化法。在整个过程中,我们比较并对比了生物矿化和传统合成方法,强调了可从传统合成方法中实施的优化措施,以改善生物矿化纳米晶体的性能,如尺寸和形态,使其能够与化学合成的先进功能纳米材料相竞争。