Laboratory of Interfaces and Nanosized Systems, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/a, H-1117 Budapest, Hungary.
J Chem Phys. 2010 Oct 14;133(14):144702. doi: 10.1063/1.3496466.
The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures.
采用巨正则蒙特卡罗方法模拟水分子在不同类型模型 soot 颗粒上的吸附等温线。这些 soot 模型是通过首先从洋葱富勒烯结构中去除原子来构建的,以便在 soot 内部创建随机分布的孔,然后基于碳原子之间的反应自适应分子间反应经验键序(AIREBO)描述进行分子动力学模拟,以优化得到的结构。所得结果清楚地表明,水分子在 soot 上吸附的主要驱动力是形成新的水分子-水分子氢键的可能性,这些氢键与已吸附的水分子形成。在 298 K 下计算得到的水吸附等温线的形状强烈依赖于水分子在碳质结构孔中的可能受限情况。我们发现有两个重要因素影响 soot 的吸附能力。其中第一个因素在低压下起主导作用,是 soot 容纳在强亲水性位置上的第一吸附水分子的能力。第二个因素与孔的大小和形状有关,这些孔应该使填充它们的水分子的氢键网络达到最佳状态。第二个因素决定了在较高压力下的吸附特性。