Laroche Serge
Biol Aujourdhui. 2010;204(2):93-102. doi: 10.1051/jbio/2010006. Epub 2010 Jun 21.
A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and morphological remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. Today, it is generally accepted that one key neurobiological mechanism underlying the formation of memories reside in activity-driven modifications of synaptic strength and structural remodelling of neural networks activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation, a long-lasting activity-dependent form of synaptic strengthening, opened a new chapter in the study of the neurobiological substrate of memory in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity and memory formation are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of neuronal gene programs is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.
大脑的一个决定性特征是其具有非凡的能力,能够通过可塑性机制进行与活动相关的功能和形态重塑,而这些可塑性机制构成了我们编码和保留记忆能力的基础。如今,人们普遍认为,记忆形成背后的一个关键神经生物学机制在于学习过程中被激活的神经网络的突触强度的活动驱动型改变以及结构重塑。对通常被称为长时程增强这一现象的发现和详细报道,即一种持久的、与活动相关的突触增强形式,为脊椎动物大脑记忆的神经生物学基础研究开启了新篇章,并且这种突触可塑性形式现已成为探寻学习和记忆细胞基础的主导模型。迄今为止,突触可塑性和记忆形成背后的细胞及分子机制中的关键事件正开始被识别出来。它们需要特定受体和几个分子级联反应的激活,以将细胞外信号转化为神经元连接中持久的功能变化。越来越多的证据表明,神经元基因程序的快速激活是记忆形成所需的神经网络持久修饰背后的关键机制。本文对记忆存储的细胞和分子机制研究的最新进展进行了综述。