Suppr超能文献

使用 DAEM 方法研究惰性和氧化环境下木材的热降解机制。

Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.

机构信息

Energy Technology Research Group, School of Engineering Science, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.

出版信息

Bioresour Technol. 2011 Jan;102(2):2047-52. doi: 10.1016/j.biortech.2010.09.081. Epub 2010 Sep 26.

Abstract

The pyrolytic behavior of wood is investigated under inert and oxidative conditions. The TGA experiment is given a temperature variation from 323 to 1173 K by setting the heating rate between 5 and 40 K/min. The results of DTG curves show that the hemicellulose shoulder peak for birch is more visible under inert atmosphere due to the higher content of reactive xylan-based hemicellulose (mannan-based for pine). When oxygen presents, thermal reactivity of biomass (especially the cellulose) is greatly enhanced due to the acceleration of mass loss in the first stage, and complex reactions occur simultaneously in the second stage when char and lignin oxidize. A new kinetic model is employed for biomass pyrolysis, namely the distributed activation energy model (DAEM). Under inert atmosphere, the distributed activation energy for the two species is found to be increased from 180 to 220 kJ/mol at the solid conversion of 10-85% with the high correlation coefficient. Under oxidative atmosphere, the distributed activation energy is about 175-235 kJ/mol at the solid conversion of 10-65% and 300-770 kJ/mol at the solid conversion of 70-95% with the low correlation coefficient (below 0.90). Comparatively, the activation energy obtained from established global kinetic model is correspondingly lower than that from DAEM under both inert and oxidative environments, giving relatively higher correlation coefficient (more than 0.96). The results imply that the DAEM is not suitable for oxidative pyrolysis of biomass (especially for the second mass loss stage in air), but it could represent the intrinsic mechanism of thermal decomposition of wood under nitrogen better than global kinetic model when it is applicable.

摘要

研究了惰性和氧化性条件下木材的热解行为。通过将升温速率设置在 5 和 40 K/min 之间,TGA 实验的温度变化范围为 323 至 1173 K。DTG 曲线的结果表明,由于含有更多反应性木聚糖基半纤维素(松木中为甘露聚糖基),在惰性气氛下桦木的半纤维素肩峰更为明显。当氧气存在时,由于第一阶段质量损失的加速,生物质(特别是纤维素)的热反应性大大增强,并且在第二阶段炭和木质素氧化时同时发生复杂反应。采用一种新的生物质热解动力学模型,即分布活化能模型(DAEM)。在惰性气氛下,两种物质的分布活化能从 180 到 220 kJ/mol 增加,固体转化率为 10-85%,相关系数较高。在氧化性气氛下,固体转化率为 10-65%时的分布活化能约为 175-235 kJ/mol,固体转化率为 70-95%时的分布活化能为 300-770 kJ/mol,相关系数较低(低于 0.90)。相比之下,在惰性和氧化性环境下,从建立的全局动力学模型获得的活化能相应低于从 DAEM 获得的活化能,给出了更高的相关系数(大于 0.96)。结果表明,DAEM 不适用于生物质的氧化性热解(特别是在空气中的第二质量损失阶段),但在适用时,它比全局动力学模型更能代表氮气下木材热分解的内在机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验