NCT Trial Center, German Cancer Research Center, Heidelberg, Germany.
BMC Med Inform Decis Mak. 2013 Jul 24;13:75. doi: 10.1186/1472-6947-13-75.
The usage of patient data for research poses risks concerning the patients' privacy and informational self-determination. Next-generation-sequencing technologies and various other methods gain data from biospecimen, both for translational research and personalized medicine. If these biospecimen are anonymized, individual research results from genomic research, which should be offered to patients in a clinically relevant timeframe, cannot be associated back to the individual. This raises an ethical concern and challenges the legitimacy of anonymized patient samples. In this paper we present a new approach which supports both data privacy and the possibility to give feedback to patients about their individual research results.
We examined previously published privacy concepts regarding a streamlined de-pseudonymization process and a patient-based pseudonym as applicable to research with genomic data and warehousing approaches. All concepts identified in the literature review were compared to each other and analyzed for their applicability to translational research projects. We evaluated how these concepts cope with challenges implicated by personalized medicine. Therefore, both person-centricity issues and a separation of pseudonymization and de-pseudonymization stood out as a central theme in our examination. This motivated us to enhance an existing pseudonymization method regarding a separation of duties.
The existing concepts rely on external trusted third parties, making de-pseudonymization a multistage process involving additional interpersonal communication, which might cause critical delays in patient care. Therefore we propose an enhanced method with an asymmetric encryption scheme separating the duties of pseudonymization and de-pseudonymization. The pseudonymization service provider is unable to conclude the patient identifier from the pseudonym, but assigns this ability to an authorized third party (ombudsman) instead. To solve person-centricity issues, a collision-resistant function is incorporated into the method. These two facts combined enable us to address essential challenges in translational research. A productive software prototype was implemented to prove the functionality of the suggested translational, data privacy-preserving method. Eventually, we performed a threat analysis to evaluate potential hazards connected with this pseudonymization method.
The proposed method offers sustainable organizational simplification regarding an ethically indicated, but secure and controlled process of de-pseudonymizing patients. A pseudonym is patient-centered to allow correlating separate datasets from one patient. Therefore, this method bridges the gap between bench and bedside in translational research while preserving patient privacy. Assigned ombudsmen are able to de-pseudonymize a patient, if an individual research result is clinically relevant.
将患者数据用于研究可能会对患者的隐私和信息自决权造成风险。下一代测序技术和各种其他方法从生物样本中获取数据,既用于转化研究,也用于个性化医疗。如果这些生物样本被匿名化,那么从基因组研究中获得的个别研究结果,应该在临床相关的时间框架内提供给患者,就不能与个人关联起来。这引发了一个伦理问题,并对匿名化患者样本的合法性提出了挑战。在本文中,我们提出了一种新方法,该方法既支持数据隐私,又支持向患者反馈其个人研究结果。
我们研究了先前关于简化去匿名化过程和适用于基因组数据研究和仓储方法的基于患者的假名的隐私概念。文献综述中确定的所有概念都相互比较,并分析其在转化研究项目中的适用性。我们评估了这些概念如何应对个性化医疗所带来的挑战。因此,以患者为中心的问题和假名化与去假名化的分离成为我们检查的一个核心主题。这促使我们增强现有的假名化方法,以实现职责分离。
现有的概念依赖于外部可信的第三方,使得去匿名化成为一个多阶段的过程,涉及额外的人际沟通,这可能会导致患者护理的关键延误。因此,我们提出了一种改进的方法,该方法采用非对称加密方案分离假名化和去假名化的职责。假名化服务提供商无法从假名中推断出患者标识符,但将此能力分配给授权的第三方(调解员)。为了解决以患者为中心的问题,将抗冲突函数合并到方法中。这两个事实结合起来,使我们能够应对转化研究中的基本挑战。实现了一个生产性软件原型,以证明所建议的转化、数据隐私保护方法的功能。最终,我们进行了威胁分析,以评估与这种假名化方法相关的潜在危险。
所提出的方法在伦理上需要的、安全且受控的去匿名化过程中提供了可持续的组织简化。假名以患者为中心,允许关联来自一个患者的单独数据集。因此,该方法在保留患者隐私的同时,弥合了转化研究中基础研究与临床实践之间的差距。如果个体研究结果具有临床相关性,分配的调解员可以对患者进行去匿名化。