Suppr超能文献

医学文献理解中常见错误的分类。

A classification of errors in lay comprehension of medical documents.

机构信息

Division of Specialized Information Services, National Library of Medicine, Bethesda, MD 20892-5467, USA.

出版信息

J Biomed Inform. 2012 Dec;45(6):1151-63. doi: 10.1016/j.jbi.2012.07.012. Epub 2012 Aug 20.

Abstract

Emphasis on participatory medicine requires that patients and consumers participate in tasks traditionally reserved for healthcare providers. This includes reading and comprehending medical documents, often but not necessarily in the context of interacting with Personal Health Records (PHRs). Research suggests that while giving patients access to medical documents has many benefits (e.g., improved patient-provider communication), lay people often have difficulty understanding medical information. Informatics can address the problem by developing tools that support comprehension; this requires in-depth understanding of the nature and causes of errors that lay people make when comprehending clinical documents. The objective of this study was to develop a classification scheme of comprehension errors, based on lay individuals' retellings of two documents containing clinical text: a description of a clinical trial and a typical office visit note. While not comprehensive, the scheme can serve as a foundation of further development of a taxonomy of patients' comprehension errors. Eighty participants, all healthy volunteers, read and retold two medical documents. A data-driven content analysis procedure was used to extract and classify retelling errors. The resulting hierarchical classification scheme contains nine categories and 23 subcategories. The most common error made by the participants involved incorrectly recalling brand names of medications. Other common errors included misunderstanding clinical concepts, misreporting the objective of a clinical research study and physician's findings during a patient's visit, and confusing and misspelling clinical terms. A combination of informatics support and health education is likely to improve the accuracy of lay comprehension of medical documents.

摘要

强调参与式医学要求患者和消费者参与传统上由医疗保健提供者承担的任务。这包括阅读和理解医疗文件,通常但并非一定是在与个人健康记录(PHR)交互的上下文中。研究表明,虽然让患者获得医疗文件有很多好处(例如,改善医患沟通),但非专业人士通常很难理解医疗信息。信息学可以通过开发支持理解的工具来解决这个问题;这需要深入了解非专业人士在理解临床文档时犯错误的性质和原因。本研究的目的是开发一种基于非专业人士复述两份包含临床文本的文档(一份临床试验描述和一份典型的就诊记录)的理解错误分类方案。虽然不全面,但该方案可以作为进一步开发患者理解错误分类法的基础。80 名参与者均为健康志愿者,阅读并复述了两份医疗文件。使用数据驱动的内容分析程序提取和分类复述错误。由此产生的分层分类方案包含九个类别和 23 个子类别。参与者最常犯的错误是错误地回忆药物的品牌名称。其他常见错误包括误解临床概念、错误报告临床研究的目的和医生在患者就诊时的发现,以及混淆和拼写错误的临床术语。信息学支持和健康教育的结合可能会提高非专业人士对医疗文件理解的准确性。

相似文献

1
A classification of errors in lay comprehension of medical documents.
J Biomed Inform. 2012 Dec;45(6):1151-63. doi: 10.1016/j.jbi.2012.07.012. Epub 2012 Aug 20.
2
The effectiveness of health literacy interventions on the informed consent process of health care users: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Oct;13(10):82-94. doi: 10.11124/jbisrir-2015-2304.
3
Beyond readability: investigating coherence of clinical text for consumers.
J Med Internet Res. 2011 Dec 2;13(4):e104. doi: 10.2196/jmir.1842.
7
Analysis of Errors in Dictated Clinical Documents Assisted by Speech Recognition Software and Professional Transcriptionists.
JAMA Netw Open. 2018 Jul;1(3):e180530. doi: 10.1001/jamanetworkopen.2018.0530. Epub 2018 Jul 6.
8

引用本文的文献

2
Generative artificial intelligence writing open notes: A mixed methods assessment of the functionality of GPT 3.5 and GPT 4.0.
Digit Health. 2024 Oct 29;10:20552076241291384. doi: 10.1177/20552076241291384. eCollection 2024 Jan-Dec.
4
Health Information on Pre-Exposure Prophylaxis From Search Engines and Twitter: Readability Analysis.
JMIR Public Health Surveill. 2023 Sep 4;9:e48630. doi: 10.2196/48630.
5
Evaluation of Patient-Friendly Diagnosis Clarifications in a Hospital Patient Portal.
Appl Clin Inform. 2023 May;14(3):455-464. doi: 10.1055/a-2067-5310. Epub 2023 Apr 1.
6
Towards more patient friendly clinical notes through language models and ontologies.
AMIA Annu Symp Proc. 2022 Feb 21;2021:881-890. eCollection 2021.
9
Evaluation of lexical clarification by patients reading their clinical notes: a quasi-experimental interview study.
BMC Med Inform Decis Mak. 2020 Dec 15;20(Suppl 10):278. doi: 10.1186/s12911-020-01286-9.
10
Predicting Transition Words Between Sentence for English and Spanish Medical Text.
AMIA Annu Symp Proc. 2020 Mar 4;2019:523-531. eCollection 2019.

本文引用的文献

1
Beyond readability: investigating coherence of clinical text for consumers.
J Med Internet Res. 2011 Dec 2;13(4):e104. doi: 10.2196/jmir.1842.
2
Participants' perceptions of research benefits in an African genetic epidemiology study.
Dev World Bioeth. 2011 Dec;11(3):128-35. doi: 10.1111/j.1471-8847.2011.00309.x.
3
Categorizing the effect of comorbidity: a qualitative study of individuals' experiences in a low-vision rehabilitation program.
J Am Geriatr Soc. 2011 Oct;59(10):1802-9. doi: 10.1111/j.1532-5415.2011.03602.x. Epub 2011 Sep 13.
4
7
Personal health records: a scoping review.
J Am Med Inform Assoc. 2011 Jul-Aug;18(4):515-22. doi: 10.1136/amiajnl-2011-000105.
9
Lay people's experiences with reading their medical record.
Soc Sci Med. 2011 May;72(9):1570-3. doi: 10.1016/j.socscimed.2011.03.006. Epub 2011 Mar 24.
10
The military health system's personal health record pilot with Microsoft HealthVault and Google Health.
J Am Med Inform Assoc. 2011 Mar-Apr;18(2):118-24. doi: 10.1136/jamia.2010.004671. Epub 2011 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验