Suppr超能文献

精子核对胚胎发育的非遗传贡献。

Non-genetic contributions of the sperm nucleus to embryonic development.

机构信息

Department Anatomy and Reproductive Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.

出版信息

Asian J Androl. 2011 Jan;13(1):31-5. doi: 10.1038/aja.2010.75. Epub 2010 Oct 18.

Abstract

Recent data from several laboratories have provided evidence that the newly fertilized oocyte inherits epigenetic signals from the sperm chromatin that are required for proper embryonic development. For the purposes of this review, the term epigenetic is used to describe all types of molecular information that are transmitted from the sperm cell to the embryo. There are at least six different forms of epigenetic information that have already been established as being required for proper embryogenesis in mammals or for which there is evidence that it may do so. These are (i) DNA methylation; (ii) sperm-specific histones, (iii) other chromatin-associated proteins; (iv) the perinuclear theca proteins; (v) sperm-born RNAs and, the focus of this review; and (vi) the DNA loop domain organization by the sperm nuclear matrix. These epigenetic signals should be considered when designing protocols for the manipulation and cryopreservation of spermatozoa for assisted reproductive technology as necessary components for effective fertilization and subsequent embryo development.

摘要

最近来自几个实验室的数据提供了证据,证明新受精的卵母细胞从精子染色质中继承了表观遗传信号,这些信号对于胚胎的正常发育是必需的。就本综述而言,术语“表观遗传”用于描述从精子细胞传递到胚胎的所有类型的分子信息。至少已经确定了六种不同形式的表观遗传信息,这些信息对于哺乳动物的胚胎发生或有证据表明可能发生是必需的。这些是(i) DNA 甲基化;(ii) 精子特异性组蛋白;(iii) 其他染色质相关蛋白;(iv) 核周质膜蛋白;(v) 精子源性 RNA;以及本综述的重点;和 (vi) 精子核基质的 DNA 环域组织。在设计用于辅助生殖技术的精子操作和冷冻保存的方案时,应考虑这些表观遗传信号,因为它们是有效受精和随后胚胎发育的必要组成部分。

相似文献

1
Non-genetic contributions of the sperm nucleus to embryonic development.
Asian J Androl. 2011 Jan;13(1):31-5. doi: 10.1038/aja.2010.75. Epub 2010 Oct 18.
2
The effect of epigenetic sperm abnormalities on early embryogenesis.
Asian J Androl. 2006 Mar;8(2):131-42. doi: 10.1111/j.1745-7262.2006.00127.x.
3
Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization.
Mol Cell Endocrinol. 2020 Dec 1;518:110964. doi: 10.1016/j.mce.2020.110964. Epub 2020 Jul 29.
4
Novel insights into the genetic and epigenetic paternal contribution to the human embryo.
Clinics (Sao Paulo). 2013;68 Suppl 1(Suppl 1):5-14. doi: 10.6061/clinics/2013(sup01)02.
5
Epigenetic processes implemented during spermatogenesis distinguish the paternal pronucleus in the embryo.
Reprod Biomed Online. 2008 Jan;16(1):13-22. doi: 10.1016/s1472-6483(10)60552-4.
6
Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion.
Int Rev Cytol. 2000;195:1-65. doi: 10.1016/s0074-7696(08)62703-5.
7
Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction.
Nat Rev Urol. 2012 Nov;9(11):609-19. doi: 10.1038/nrurol.2012.183. Epub 2012 Oct 9.
8
Epigenetic reprogramming of embryos derived from sperm frozen at -20°C.
Sci China Life Sci. 2012 Apr;55(4):349-57. doi: 10.1007/s11427-012-4309-8. Epub 2012 May 9.
9
The paternal epigenome and embryogenesis: poising mechanisms for development.
Asian J Androl. 2011 Jan;13(1):76-80. doi: 10.1038/aja.2010.61. Epub 2010 Oct 25.
10
The oviduct: from sperm selection to the epigenetic landscape of the embryo.
Biol Reprod. 2018 Mar 1;98(3):262-276. doi: 10.1093/biolre/iox173.

引用本文的文献

2
Sociodemographic Trends and Perinatal Outcomes in Fathers 50 Years and Older.
JAMA Netw Open. 2024 Aug 1;7(8):e2425269. doi: 10.1001/jamanetworkopen.2024.25269.
4
Differential Sperm Proteomics Reveals the Significance of Fatty Acid Synthase and Clusterin in Idiopathic Recurrent Pregnancy Loss.
Reprod Sci. 2023 Dec;30(12):3456-3468. doi: 10.1007/s43032-023-01288-8. Epub 2023 Jun 28.
5
Male Contributory Factors in Recurrent Pregnancy Loss.
Reprod Sci. 2023 Jul;30(7):2107-2121. doi: 10.1007/s43032-023-01192-1. Epub 2023 Feb 15.
7
Sperm cryopreservation reduces offspring growth.
Proc Biol Sci. 2019 Sep 25;286(1911):20191644. doi: 10.1098/rspb.2019.1644.
9
10
Biochemical alterations in the oocyte in support of early embryonic development.
Cell Mol Life Sci. 2017 Feb;74(3):469-485. doi: 10.1007/s00018-016-2356-1. Epub 2016 Sep 7.

本文引用的文献

1
Proteomics and the genetics of sperm chromatin condensation.
Asian J Androl. 2011 Jan;13(1):24-30. doi: 10.1038/aja.2010.65. Epub 2010 Nov 1.
2
Epigenetics, genomic imprinting and assisted reproductive technology.
Ann Endocrinol (Paris). 2010 May;71(3):237-8. doi: 10.1016/j.ando.2010.02.004. Epub 2010 Apr 2.
4
Function of sperm chromatin structural elements in fertilization and development.
Mol Hum Reprod. 2010 Jan;16(1):30-6. doi: 10.1093/molehr/gap080. Epub 2009 Sep 11.
5
Distinctive chromatin in human sperm packages genes for embryo development.
Nature. 2009 Jul 23;460(7254):473-8. doi: 10.1038/nature08162. Epub 2009 Jun 14.
7
Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation.
Andrologia. 2009 Apr;41(2):88-94. doi: 10.1111/j.1439-0272.2008.00890.x.
8
Imprinting disorders and assisted reproductive technology.
Fertil Steril. 2009 Feb;91(2):305-15. doi: 10.1016/j.fertnstert.2009.01.002.
9
Differential nuclear scaffold/matrix attachment marks expressed genes.
Hum Mol Genet. 2009 Feb 15;18(4):645-54. doi: 10.1093/hmg/ddn394. Epub 2008 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验