Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan.
Acc Chem Res. 2010 Oct 19;43(10):1375-85. doi: 10.1021/ar100064g.
Since their discovery in the early 1990s, single-walled carbon nanotubes (SWNTs) have spawned previously unimaginable commercial and industrial technologies. Their versatility stems from their unique electronic, physical/chemical, and mechanical properties, which set them apart from traditional materials. Many researchers have investigated SWNT growth mechanisms in the years since their discovery. The most prevalent of these is the vapor-liquid-solid (VLS) mechanism, which is based on experimental observations. Within the VLS mechanism, researchers assume that the formation of a SWNT starts with co-condensation of carbon and metal atoms from vapor to form liquid metal carbide. Once the liquid reaches supersaturation, the solid phase nanotubes begin to grow. The growth process is partitioned into three distinct stages: nucleation of a carbon "cap-precursor," "cap-to-tube" transformation, and continued SWNT growth. In recent years, molecular dynamics (MD) simulations have come to the fore with respect to SWNT growth. MD simulations lead to spatial and temporal resolutions of these processes that are superior to those possible using current experimental techniques, and so provide valuable information regarding the growth process that researchers cannot obtain experimentally. In this Account, we review our own recent efforts to simulate SWNT nucleation, growth, and healing phenomena on transition-metal catalysts using quantum mechanical molecular dynamics (QM/MD) methods. In particular, we have validated each stage of the SWNT condensation mechanism using a self-consistent-charge density-functional tight-binding (SCC-DFTB) methodology. With respect to the nucleation of a SWNT cap-precursor (stage 1), we have shown that the presence of a transition-metal carbide particle is not a necessary prerequisite for SWNT nucleation, contrary to conventional experimental presumptions. The formation and coalescence of polyyne chains on the metal surface occur first, followed by the formation of the SWNT cap-precursor, "ring condensation", and the creation of an sp(2)-hybridized carbon structure. In our simulations, the nucleation process takes approximately 400 ps. This first step occurs over a much longer time scale than the second stage of SWNT condensation (approximately 50 ps). We therefore observe SWNT nucleation to be akin to the rate-limiting step of the SWNT formation process. In addition to the QM/MD simulation of various stages of SWNT nucleation, growth, and healing processes, we have determined the effects of temperature, catalyst composition, and catalyst size on the kinetics and mechanism of SWNT growth. With respect to temperature dependence, we observe a "sweet-spot" with respect to the efficiency of SWNT growth. In addition, Ni-catalyzed SWNT growth is observed to be 70-100% faster compared to Fe-catalyzed SWNT growth, depending on the catalyst particle size. We also observe a noticeable increase in SWNT growth rates using smaller catalyst particles. Finally, we review our recent QM/MD investigation of SWNT healing. In particular, we recount mechanisms by which adatom defects, monovacancy defects, and a "5-7 defect" are removed from a nascent SWNT. The effectiveness of these healing mechanisms depends on the rate at which carbon moieties are incorporated into the growing SWNT. Explicitly, we observe that healing is promoted using a slower carbon supply rate. From this rudimentary control of SWNT healing, we propose a route towards chirality-controlled SWNT growth.
自 20 世纪 90 年代初发现以来,单壁碳纳米管 (SWNTs) 已经催生了以前难以想象的商业和工业技术。它们的多功能性源于其独特的电子、物理/化学和机械性能,这使它们有别于传统材料。自发现以来,许多研究人员一直在研究 SWNT 生长机制。其中最流行的是基于实验观察的气-液-固 (VLS) 机制。在 VLS 机制中,研究人员假设 SWNT 的形成始于气相和金属原子的共冷凝,以形成液态金属碳化物。一旦液体达到过饱和度,固态纳米管就开始生长。生长过程分为三个不同的阶段:碳“帽前体”的成核、“帽到管”的转变和 SWNT 的持续生长。近年来,分子动力学 (MD) 模拟在 SWNT 生长方面取得了显著进展。MD 模拟可以提供比当前实验技术更好的空间和时间分辨率,从而为研究人员提供有关生长过程的有价值信息,而这些信息是无法通过实验获得的。在本账目中,我们回顾了我们最近使用量子力学分子动力学 (QM/MD) 方法模拟过渡金属催化剂上 SWNT 成核、生长和愈合现象的努力。特别是,我们使用自洽电荷密度泛函紧束缚 (SCC-DFTB) 方法验证了 SWNT 凝聚机制的每个阶段。关于 SWNT 帽前体的成核(第 1 阶段),我们已经表明,与传统的实验假设相反,过渡金属碳化物颗粒的存在不是 SWNT 成核的必要前提。聚炔链首先在金属表面形成并聚合并,然后形成 SWNT 帽前体、“环缩合”和形成 sp(2)杂化的碳结构。在我们的模拟中,成核过程大约需要 400ps。这个第一步发生的时间尺度比 SWNT 凝聚的第二阶段(大约 50ps)长得多。因此,我们观察到 SWNT 成核类似于 SWNT 形成过程的限速步骤。除了对各种 SWNT 成核、生长和愈合过程的 QM/MD 模拟外,我们还确定了温度、催化剂组成和催化剂尺寸对 SWNT 生长动力学和机制的影响。关于温度依赖性,我们观察到 SWNT 生长效率的“最佳点”。此外,与 Fe 催化的 SWNT 生长相比,Ni 催化的 SWNT 生长观察到快 70-100%,这取决于催化剂颗粒尺寸。我们还观察到使用较小的催化剂颗粒可以显著提高 SWNT 的生长速率。最后,我们回顾了我们最近关于 SWNT 愈合的 QM/MD 研究。特别是,我们描述了帽缺陷、单空位缺陷和“5-7 缺陷”如何从新生的 SWNT 中去除的机制。这些愈合机制的有效性取决于碳基团掺入生长中的 SWNT 的速度。具体来说,我们观察到随着碳供应量的增加,愈合得到促进。从这种对 SWNT 愈合的基本控制中,我们提出了一种控制 SWNT 手性生长的方法。