Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan.
Phys Chem Chem Phys. 2011 Sep 14;13(34):15673-80. doi: 10.1039/c1cp21236b. Epub 2011 Jul 25.
Density-functional tight-binding molecular dynamics (DFTB/MD) methods were employed to demonstrate single-walled carbon nanotube (SWNT) nucleation resulting from thermal annealing of SiC nanoparticles. SWNT nucleation in this case is preceded by a change of the SiC structure from a crystalline one, to one in which silicon and carbon are segregated. This structural transformation ultimately resulted in the formation of extended polyyne chains on the SiC nanoparticle surface. These polyyne chains subsequently coalesced, forming an extended sp(2)-hybridized carbon cap on the SiC nanoparticle. The kinetics of this process were enhanced significantly at higher temperatures (2500 K), compared to lower temperatures (1200 K) and so directly correlated to the surface premelting behavior of the nanoparticle structure. Analysis of the SiC nanoparticle Lindemann index between 1000 and 3000 K indicated that SWNT nucleation at temperatures below 2600 K occurred in the solid, or quasi-solid, phase. Thus, the traditional vapor-liquid-solid mechanism of SWNT growth does not apply in the case of SiC nanoparticles. Instead, we propose that this example of SWNT nucleation constitutes evidence of a vapor-solid-solid process. This conclusion complements our recent observations regarding SWNT nucleation on SiO(2) nanoparticles (A. J. Page, K. R. S. Chandrakumar, S. Irle and K. Morokuma, J. Am. Chem. Soc., 2011, 133, 621-628). In addition, similarities between the atomistic SWNT nucleation mechanisms on SiC and SiO(2) catalysts provide the first evidence of a catalyst-independent SWNT nucleation mechanism with respect to 'non-traditional' SWNT catalyst species.
采用密度泛函紧束缚分子动力学(DFTB/MD)方法证明了碳化硅纳米颗粒热退火导致单壁碳纳米管(SWNT)成核。在这种情况下,SWNT 成核之前,SiC 的结构会从结晶态转变为硅和碳分离的状态。这种结构转变最终导致 SiC 纳米颗粒表面形成扩展的聚乙炔链。这些聚乙炔链随后聚合并在 SiC 纳米颗粒上形成扩展的 sp(2)杂化碳帽。与较低温度(1200 K)相比,该过程的动力学在较高温度(2500 K)下显著增强,这与纳米颗粒结构的表面预熔化行为直接相关。在 1000 至 3000 K 之间对 SiC 纳米颗粒的林德曼指数进行分析表明,在低于 2600 K 的温度下,SWNT 在固态或准固态相中成核。因此,SWNT 生长的传统汽-液-固机制不适用于 SiC 纳米颗粒。相反,我们提出这种 SWNT 成核的例子构成了汽-固-固过程的证据。这一结论补充了我们最近关于 SiO(2)纳米颗粒上 SWNT 成核的观察结果(A. J. Page, K. R. S. Chandrakumar, S. Irle 和 K. Morokuma, J. Am. Chem. Soc., 2011, 133, 621-628)。此外,SiC 和 SiO(2)催化剂上原子级 SWNT 成核机制之间的相似性为“非传统”SWNT 催化剂物种提供了第一个关于催化剂独立的 SWNT 成核机制的证据。