Suppr超能文献

通过气-固-固机制从碳包覆的 SiO2 纳米粒子中引发 SWNT 成核。

SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism.

机构信息

Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan.

出版信息

J Am Chem Soc. 2011 Jan 26;133(3):621-8. doi: 10.1021/ja109018h. Epub 2010 Dec 10.

Abstract

Since the discovery of single-walled carbon nanotubes (SWNTs) in the early 1990s, the most commonly accepted model of SWNT growth on traditional catalysts (i.e., transition metals including Fe, Co, Ni, etc.) is the vapor-liquid-solid (VLS) mechanism. In more recent years, the synthesis of SWNTs on nontraditional catalysts, such as SiO(2), has also been reported. The precise atomistic mechanism explaining SWNT growth on nontraditional catalysts, however, remains unknown. In this work, CH(4) chemical vapor deposition (CVD) and single-walled carbon nanotube (SWNT) nucleation on SiO(2) nanoparticles have been investigated using quantum-chemical molecular dynamics (QM/MD) methods. Upon supply of CH(x) species to the surface of a model SiO(2) nanoparticle, CO was produced as the main chemical product of the CH(4) CVD process, in agreement with a recent experimental investigation [Bachmatiuk et al., ACS Nano 2009, 3, 4098]. The production of CO occurred simultaneously with the carbothermal reduction of the SiO(2) nanoparticle. However, this reduction, and the formation of amorphous SiC, was restricted to the nanoparticle surface, with the core of the SiO(2) nanoparticle remaining oxygen-rich. In cases of high carbon concentration, SWNT nucleation then followed, and was driven by the formation of isolated sp(2)-carbon networks via the gradual coalescence of adjacent polyyne chains. These simulations indicate that the carbon saturation of the SiO(2) surface was a necessary prerequisite for SWNT nucleation. These simulations also indicate that a vapor-solid-solid mechanism, rather than a VLS mechanism, is responsible for SWNT nucleation on SiO(2). Fundamental differences between SWNT nucleation on nontraditional and traditional catalysts are therefore observed.

摘要

自 20 世纪 90 年代初发现单壁碳纳米管 (SWNTs) 以来,传统催化剂(即铁、钴、镍等过渡金属)上 SWNT 生长最常被接受的模型是气相-液相-固相 (VLS) 机制。近年来,也有关于在非传统催化剂(如二氧化硅)上合成 SWNTs 的报道。然而,解释非传统催化剂上 SWNT 生长的精确原子机制仍然未知。在这项工作中,使用量子化学分子动力学 (QM/MD) 方法研究了 CH(x) 物种在 SiO(2) 纳米颗粒上的 CH(4) 化学气相沉积 (CVD) 和单壁碳纳米管 (SWNT) 成核。当 CH(x) 物种供应到模型 SiO(2) 纳米颗粒的表面时,CO 作为 CH(4) CVD 过程的主要化学产物生成,这与最近的实验研究一致[Bachmatiuk 等人,ACS Nano 2009, 3, 4098]。CO 的生成与 SiO(2) 纳米颗粒的碳热还原同时发生。然而,这种还原以及无定形 SiC 的形成仅限于纳米颗粒表面,SiO(2) 纳米颗粒的核心仍然富含氧。在高碳浓度的情况下,随后发生了 SWNT 成核,这是通过相邻聚炔链的逐渐融合形成孤立的 sp(2)-碳网络驱动的。这些模拟表明,SiO(2) 表面的碳饱和是 SWNT 成核的必要前提。这些模拟还表明,气相-固-固机制而不是 VLS 机制负责 SiO(2) 上的 SWNT 成核。因此,观察到非传统和传统催化剂上 SWNT 成核之间存在根本差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验