Suppr超能文献

PredCSF:一种基于综合特征预测芋螺毒素超家族的方法。

PredCSF: an integrated feature-based approach for predicting conotoxin superfamily.

作者信息

Fan Yong-Xian, Song Jiangning, Shen Hong-Bin, Kong X

机构信息

Department of Automation, Shanghai Jiaotong University, Shanghai, China.

出版信息

Protein Pept Lett. 2011 Mar;18(3):261-7. doi: 10.2174/092986611794578341.

Abstract

Conotoxins are small disulfide-rich peptides that are invaluable channel-targeted peptides and target neuronal receptors. They show prospects for being potent pharmaceuticals in the treatment of Alzheimer's disease, Parkinson's disease, and epilepsy. Accurate and fast prediction of conotoxin superfamily is very helpful towards the understanding of its biological and pharmacological functions especially in the post-genomic era. In the present study, we have developed a novel approach called PredCSF for predicting the conotoxin superfamily from the amino acid sequence directly based on fusing different kinds of sequential features by using modified one-versus-rest SVMs. The input features to the PredCSF classifiers are composed of physicochemical properties, evolutionary information, predicted second structure and amino acid composition, where the most important features are further screened by random forest feature selection to improve the prediction performance. The prediction results show that PredCSF can obtain an overall accuracy of 90.65% based on a benchmark dataset constructed from the most recent database, which consists of 4 main conotoxin superfamilies and 1 class of non-conotoxin class. Systematic experiments also show that combing different features is helpful for enhancing the prediction power when dealing with complex biological problems. PredCSF is expected to be a powerful tool for in silico identification of novel conotonxins and is freely available for academic use at http://www.csbio.sjtu.edu.cn/bioinf/PredCSF.

摘要

芋螺毒素是一类富含二硫键的小分子肽,是极具价值的靶向通道肽,可作用于神经元受体。它们在治疗阿尔茨海默病、帕金森病和癫痫方面展现出成为有效药物的潜力。在基因组时代,准确快速地预测芋螺毒素超家族对于理解其生物学和药理功能非常有帮助。在本研究中,我们开发了一种名为PredCSF的新方法,通过使用改进的一对多支持向量机融合不同类型的序列特征,直接从氨基酸序列预测芋螺毒素超家族。PredCSF分类器的输入特征由物理化学性质、进化信息、预测的二级结构和氨基酸组成构成,其中最重要的特征通过随机森林特征选择进一步筛选,以提高预测性能。预测结果表明,基于从最新数据库构建的基准数据集,PredCSF可以获得90.65%的总体准确率,该数据集由4个主要的芋螺毒素超家族和1类非芋螺毒素类别组成。系统实验还表明,在处理复杂的生物学问题时,组合不同特征有助于提高预测能力。PredCSF有望成为一种用于在计算机上鉴定新型芋螺毒素的强大工具,可在http://www.csbio.sjtu.edu.cn/bioinf/PredCSF免费用于学术用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验