Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Mar Drugs. 2019 Mar 1;17(3):145. doi: 10.3390/md17030145.
Marine cone snails are carnivorous gastropods that use peptide toxins called conopeptides both as a defense mechanism and as a means to immobilize and kill their prey. These peptide toxins exhibit a large chemical diversity that enables exquisite specificity and potency for target receptor proteins. This diversity arises in terms of variations both in amino acid sequence and length, and in posttranslational modifications, particularly the formation of multiple disulfide linkages. Most of the functionally characterized conopeptides target ion channels of animal nervous systems, which has led to research on their therapeutic applications. Many facets of the underlying molecular mechanisms responsible for the specificity and virulence of conopeptides, however, remain poorly understood. In this review, we will explore the chemical diversity of conopeptides from a computational perspective. First, we discuss current approaches used for classifying conopeptides. Next, we review different computational strategies that have been applied to understanding and predicting their structure and function, from machine learning techniques for predictive classification to docking studies and molecular dynamics simulations for molecular-level understanding. We then review recent novel computational approaches for rapid high-throughput screening and chemical design of conopeptides for particular applications. We close with an assessment of the state of the field, emphasizing important questions for future lines of inquiry.
海洋圆锥蜗牛是肉食性腹足纲动物,它们使用称为 conopeptides 的肽毒素作为防御机制和使猎物失去活动能力和杀死猎物的手段。这些肽毒素表现出很大的化学多样性,使其对靶受体蛋白具有极高的特异性和效力。这种多样性体现在氨基酸序列和长度的变化以及翻译后修饰上,特别是形成多个二硫键。大多数功能表征的 conopeptides 靶向动物神经系统的离子通道,这导致了对其治疗应用的研究。然而,对于 conopeptides 的特异性和毒性的基础分子机制的许多方面仍然知之甚少。在这篇综述中,我们将从计算的角度探讨 conopeptides 的化学多样性。首先,我们讨论当前用于对 conopeptides 进行分类的方法。接下来,我们回顾了不同的计算策略,这些策略已被应用于理解和预测它们的结构和功能,从用于预测分类的机器学习技术到用于分子水平理解的对接研究和分子动力学模拟。然后,我们回顾了用于特定应用的 conopeptides 的快速高通量筛选和化学设计的最新新颖计算方法。最后,我们评估了该领域的现状,强调了未来研究方向的重要问题。