Suppr超能文献

酵母细胞中 DNA 损伤诱导的全基因组反应中 SAGA 和 TFIID 的顺序募集。

Sequential recruitment of SAGA and TFIID in a genomic response to DNA damage in Saccharomyces cerevisiae.

机构信息

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Mol Cell Biol. 2011 Jan;31(1):190-202. doi: 10.1128/MCB.00317-10. Epub 2010 Oct 18.

Abstract

Eukaryotic genes respond to their environment by changing the expression of selected genes. The question we address here is whether distinct transcriptional responses to different environmental signals elicit distinct modes of assembly of the transcription machinery. In particular, we examine transcription complex assembly by the stress-directed SAGA complex versus the housekeeping assembly factor TFIID. We focus on genomic responses to the DNA damaging agent methyl methanesulfonate (MMS) in comparison to responses to acute heat shock, looking at changes in genome-wide factor occupancy measured by chromatin immunoprecipitation-microchip (ChIP-chip) and ChIP-sequencing analyses. Our data suggest that MMS-induced genes undergo transcription complex assembly sequentially, first involving SAGA and then involving a slower TFIID recruitment, whereas heat shock genes utilize the SAGA and TFIID pathways rapidly and in parallel. Also Crt1, the repressor of model MMS-inducible ribonucleotide reductase genes, was found not to play a wider role in repression of DNA damage-inducible genes. Taken together, our findings reveal a distinct involvement of gene and chromatin regulatory factors in response to DNA damage versus heat shock and suggest different implementations of the SAGA and TFIID assembly pathways that may depend upon whether a sustained or transient change in gene expression ensues.

摘要

真核基因通过改变特定基因的表达来响应其环境。我们在这里要解决的问题是,对不同环境信号的不同转录反应是否会引发转录机制的不同组装模式。具体而言,我们研究了应激导向的 SAGA 复合物与管家组装因子 TFIID 对转录复合物的组装。我们将 DNA 损伤剂甲基甲磺酸(MMS)引起的基因组反应与急性热休克的反应进行了比较,通过染色质免疫沉淀微芯片(ChIP-chip)和 ChIP-seq 分析来研究全基因组因子占有率的变化。我们的数据表明,MMS 诱导的基因依次进行转录复合物的组装,首先涉及 SAGA,然后涉及较慢的 TFIID 募集,而热休克基因则快速且平行地利用 SAGA 和 TFIID 途径。此外,我们还发现模型 MMS 诱导的核核苷酸还原酶基因的抑制剂 Crt1 并不在抑制 DNA 损伤诱导基因的表达方面发挥更广泛的作用。总之,我们的发现揭示了基因和染色质调节因子在应对 DNA 损伤与热休克时的明显参与,并表明 SAGA 和 TFIID 组装途径的不同实现方式可能取决于是否需要持续或短暂的基因表达变化。

相似文献

1
Sequential recruitment of SAGA and TFIID in a genomic response to DNA damage in Saccharomyces cerevisiae.
Mol Cell Biol. 2011 Jan;31(1):190-202. doi: 10.1128/MCB.00317-10. Epub 2010 Oct 18.
2
Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA.
J Biol Chem. 2008 Oct 10;283(41):27360-27368. doi: 10.1074/jbc.M803831200. Epub 2008 Aug 5.
4
Plc1p is required for SAGA recruitment and derepression of Sko1p-regulated genes.
Mol Biol Cell. 2007 Jul;18(7):2419-28. doi: 10.1091/mbc.e06-10-0946. Epub 2007 Apr 11.
7
Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters.
EMBO J. 2016 Nov 15;35(22):2435-2446. doi: 10.15252/embj.201695020. Epub 2016 Oct 20.
9
Changes in genomewide occupancy of core transcriptional regulators during heat stress.
Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16843-8. doi: 10.1073/pnas.0404988101. Epub 2004 Nov 17.

引用本文的文献

1
Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions.
Stress Biol. 2021 Dec 9;1(1):18. doi: 10.1007/s44154-021-00019-w.
3
Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism.
Nat Commun. 2021 Mar 31;12(1):1981. doi: 10.1038/s41467-021-22257-2.
4
Actin R256 Mono-methylation Is a Conserved Post-translational Modification Involved in Transcription.
Cell Rep. 2020 Sep 29;32(13):108172. doi: 10.1016/j.celrep.2020.108172.
5
Dynamic modules of the coactivator SAGA in eukaryotic transcription.
Exp Mol Med. 2020 Jul;52(7):991-1003. doi: 10.1038/s12276-020-0463-4. Epub 2020 Jul 3.
7
Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants.
Front Plant Sci. 2019 Aug 2;10:989. doi: 10.3389/fpls.2019.00989. eCollection 2019.
8
The transcription factor TpRfx1 is an essential regulator of amylase and cellulase gene expression in .
Biotechnol Biofuels. 2018 Oct 8;11:276. doi: 10.1186/s13068-018-1276-8. eCollection 2018.
9
Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
Mol Biol Cell. 2018 Dec 15;29(26):3168-3182. doi: 10.1091/mbc.E18-06-0353. Epub 2018 Oct 17.
10
Distinct requirements of linker DNA and transcriptional activators in promoting SAGA-mediated nucleosome acetylation.
J Biol Chem. 2018 Aug 31;293(35):13736-13749. doi: 10.1074/jbc.RA118.004487. Epub 2018 Jul 27.

本文引用的文献

1
Shifting players and paradigms in cell-specific transcription.
Mol Cell. 2009 Dec 25;36(6):924-31. doi: 10.1016/j.molcel.2009.12.011.
3
How eukaryotic genes are transcribed.
Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):117-41. doi: 10.1080/10409230902858785.
4
SHRiMP: accurate mapping of short color-space reads.
PLoS Comput Biol. 2009 May;5(5):e1000386. doi: 10.1371/journal.pcbi.1000386. Epub 2009 May 22.
5
A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome.
Genome Res. 2009 Mar;19(3):360-71. doi: 10.1101/gr.084970.108. Epub 2009 Jan 5.
6
Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA.
J Biol Chem. 2008 Oct 10;283(41):27360-27368. doi: 10.1074/jbc.M803831200. Epub 2008 Aug 5.
7
Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response.
Mol Cell Biol. 2008 Apr;28(7):2221-34. doi: 10.1128/MCB.01659-07. Epub 2008 Jan 22.
9
Comparative genomics of the environmental stress response in ascomycete fungi.
Yeast. 2007 Nov;24(11):961-76. doi: 10.1002/yea.1512.
10
Alkylating agent methyl methanesulfonate (MMS) induces a wave of global protein hyperacetylation: implications in cancer cell death.
Biochem Biophys Res Commun. 2007 Aug 24;360(2):483-9. doi: 10.1016/j.bbrc.2007.06.084. Epub 2007 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验