Suppr超能文献

多杀巴斯德氏菌毒素刺激破骨细胞分化依赖 B 细胞。

Pasteurella multocida toxin-stimulated osteoclast differentiation is B cell dependent.

机构信息

Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.

出版信息

Infect Immun. 2011 Jan;79(1):220-8. doi: 10.1128/IAI.00565-10. Epub 2010 Oct 18.

Abstract

Pasteurella multocida is a Gram-negative bacillus that infects a number of wild and domestic animals, causing respiratory diseases. Toxigenic Pasteurella multocida strains produce a protein toxin (PMT) that leads to atrophic rhinitis in swine due to enhanced osteoclastogenesis and the inhibition of osteoblast function. We show that PMT-induced osteoclastogenesis is promoted by an as-yet-uncharacterized B-cell population. The toxin, however, is not acting at the level of hematopoietic stem cells, since purified CD117(+) cells from murine hematopoietic progenitor cells cultivated with PMT did not mature into osteoclasts. The early macrophages contained within this cell population (CD117(+)/CD11b(+)) did not further differentiate into osteoclasts but survived and were able to phagocytose. Within the CD117(-) population, however, we detected PMT-induced generation of a B220(+)/CD19(+) and B220(+)/IgM(+) B-cell population that was able to take up fluorescently labeled PMT. Using purified B-cell and macrophage populations, we show that these B cells are needed to efficiently generate osteoclasts from macrophages. Cells of the immune system are thought to affect osteoclast formation and function by secreting cytokines and growth factors. We show here that PMT-stimulated B cells produce elevated levels of the osteoclastogenic factors interleukin-1β (IL-1β), IL-6, tumor necrosis factor alpha, and receptor activator of nuclear factor receptor ligand (RANKL) compared to B cells generated through incubation with IL-7. These results suggest that the osteoclastic properties characteristic for PMT may result from a cross talk between bone cells and lymphoid cells and that B cells might be an important target of Pasteurella multocida.

摘要

多杀巴斯德菌是一种革兰氏阴性杆菌,能感染许多野生动物和家畜,引起呼吸道疾病。产毒多杀巴斯德菌菌株产生一种蛋白毒素(PMT),由于破骨细胞生成增强和成骨细胞功能抑制,导致猪发生萎缩性鼻炎。我们表明,PMT 诱导的破骨细胞生成是由一个尚未明确特征的 B 细胞群促进的。然而,这种毒素不是在造血干细胞水平起作用,因为从用 PMT 培养的鼠造血祖细胞中纯化的 CD117(+)细胞不会成熟为破骨细胞。该细胞群中包含的早期巨噬细胞(CD117(+)/CD11b(+))不会进一步分化为破骨细胞,但存活下来并能够吞噬。然而,在 CD117(-)群体中,我们检测到 PMT 诱导生成了一个 B220(+)/CD19(+)和 B220(+)/IgM(+)B 细胞群体,该群体能够摄取荧光标记的 PMT。使用纯化的 B 细胞和巨噬细胞群体,我们表明这些 B 细胞对于从巨噬细胞中有效生成破骨细胞是必需的。免疫系统的细胞被认为通过分泌细胞因子和生长因子来影响破骨细胞的形成和功能。我们在这里表明,与通过与 IL-7 孵育生成的 B 细胞相比,PMT 刺激的 B 细胞产生更高水平的破骨细胞生成因子白细胞介素-1β(IL-1β)、IL-6、肿瘤坏死因子-α和核因子受体配体激活剂(RANKL)。这些结果表明,PMT 特有的破骨细胞特性可能是骨细胞和淋巴细胞之间的交叉对话的结果,并且 B 细胞可能是多杀巴斯德菌的一个重要靶标。

相似文献

1
Pasteurella multocida toxin-stimulated osteoclast differentiation is B cell dependent.
Infect Immun. 2011 Jan;79(1):220-8. doi: 10.1128/IAI.00565-10. Epub 2010 Oct 18.
3
Toxin Triggers RANKL-Independent Osteoclastogenesis.
Front Immunol. 2017 Feb 27;8:185. doi: 10.3389/fimmu.2017.00185. eCollection 2017.
4
Influence of Pasteurella multocida Toxin on the differentiation of dendritic cells into osteoclasts.
Immunobiology. 2018 Jan;223(1):142-150. doi: 10.1016/j.imbio.2017.09.001. Epub 2017 Sep 12.
6
Pasteurella multocida toxin- induced osteoclastogenesis requires mTOR activation.
Cell Commun Signal. 2015 Sep 14;13:40. doi: 10.1186/s12964-015-0117-7.
8
The pasteurella multocida toxin interacts with signalling pathways to perturb cell growth and differentiation.
Int J Med Microbiol. 2004 Apr;293(7-8):505-12. doi: 10.1078/1438-4221-00287.
9
Pasteurella multocida toxin - lessons learned from a mitogenic toxin.
Front Immunol. 2022 Dec 16;13:1058905. doi: 10.3389/fimmu.2022.1058905. eCollection 2022.
10
Involvement of Osteocytes in the Action of Toxin.
Toxins (Basel). 2018 Aug 13;10(8):328. doi: 10.3390/toxins10080328.

引用本文的文献

1
Pasteurella multocida toxin - lessons learned from a mitogenic toxin.
Front Immunol. 2022 Dec 16;13:1058905. doi: 10.3389/fimmu.2022.1058905. eCollection 2022.
2
l-Serine Lowers the Inflammatory Responses during Pasteurella multocida Infection.
Infect Immun. 2019 Nov 18;87(12). doi: 10.1128/IAI.00677-19. Print 2019 Dec.
3
B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation.
Nat Commun. 2018 Dec 3;9(1):5127. doi: 10.1038/s41467-018-07626-8.
4
Involvement of Osteocytes in the Action of Toxin.
Toxins (Basel). 2018 Aug 13;10(8):328. doi: 10.3390/toxins10080328.
5
Toxin Triggers RANKL-Independent Osteoclastogenesis.
Front Immunol. 2017 Feb 27;8:185. doi: 10.3389/fimmu.2017.00185. eCollection 2017.
6
Pasteurella multocida Toxin Manipulates T Cell Differentiation.
Front Microbiol. 2015 Nov 19;6:1273. doi: 10.3389/fmicb.2015.01273. eCollection 2015.
7
Pasteurella multocida toxin- induced osteoclastogenesis requires mTOR activation.
Cell Commun Signal. 2015 Sep 14;13:40. doi: 10.1186/s12964-015-0117-7.
9
Signaling cascades of Pasteurella multocida toxin in immune evasion.
Toxins (Basel). 2013 Sep 24;5(9):1664-81. doi: 10.3390/toxins5091664.
10
Pasteurella multocida: from zoonosis to cellular microbiology.
Clin Microbiol Rev. 2013 Jul;26(3):631-55. doi: 10.1128/CMR.00024-13.

本文引用的文献

1
Pasteurella multocida toxin is a potent activator of anti-apoptotic signalling pathways.
Cell Microbiol. 2010 Aug;12(8):1174-85. doi: 10.1111/j.1462-5822.2010.01462.x. Epub 2010 Mar 12.
2
Inflammation, cancer, and bone loss.
Curr Opin Pharmacol. 2009 Aug;9(4):427-33. doi: 10.1016/j.coph.2009.06.007. Epub 2009 Jul 2.
3
Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation.
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7179-84. doi: 10.1073/pnas.0900160106. Epub 2009 Apr 15.
4
Myeloma bone disease: recent advances in biology, diagnosis, and treatment.
Oncologist. 2009 Mar;14(3):276-83. doi: 10.1634/theoncologist.2009-0003. Epub 2009 Mar 13.
5
Bone-resorbing cells in multiple myeloma: osteoclasts, myeloma cell polykaryons, or both?
Oncologist. 2009 Mar;14(3):264-75. doi: 10.1634/theoncologist.2008-0087. Epub 2009 Mar 13.
6
The emerging field of osteoimmunology.
Immunol Res. 2009 Dec;45(2-3):100-13. doi: 10.1007/s12026-009-8093-x. Epub 2009 Jan 30.
7
RANK/RANKL: regulators of immune responses and bone physiology.
Ann N Y Acad Sci. 2008 Nov;1143:123-50. doi: 10.1196/annals.1443.016.
8
Pathogenesis of myeloma bone disease.
Leukemia. 2009 Mar;23(3):435-41. doi: 10.1038/leu.2008.336. Epub 2008 Nov 27.
9
Activation of Galpha (i) and subsequent uncoupling of receptor-Galpha(i) signaling by Pasteurella multocida toxin.
J Biol Chem. 2008 Aug 22;283(34):23288-94. doi: 10.1074/jbc.M803435200. Epub 2008 Jun 26.
10
Osteoimmunology: interactions of the bone and immune system.
Endocr Rev. 2008 Jun;29(4):403-40. doi: 10.1210/er.2007-0038. Epub 2008 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验