Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
Prostate. 2011 May 15;71(7):700-10. doi: 10.1002/pros.21286. Epub 2010 Oct 18.
Multiplex urine-based assay emerged outperforms single biomarker (e.g., prostate-specific antigen, PSA) for predicting prostate cancer (CaP), whereas its combined mode has to be fully optimized. Our aim is to determine whether a strategy of combining gene-based, protein-based, metabolite-based with positive, negative makers in urine could optimize a multiplex model for detecting CaP.
Using quantitative PCR, Western blot, and liquid chromatography-mass spectrometry, expression patterns of PCA3, TMPRSS2: ERG, Annexin A3, Sarcosine, and urine PSA were evaluated in urine samples from 86 untreated patients with CaP and 45 patients with no evidence of malignancy. Multivariate logistic regression analysis was used to generate a final model and receiver-operating characteristic (ROC) analysis and special bootstrap software to assess diagnostic performance of tested variables.
The expression patterns of PCA3, TMPRSS2: ERG, Annexin A3, Sarcosine, and a panel including these biomarkers were significant predictors of CaP both in patients with PSA 4-10 ng/ml and in all patients (all P < 0.05). Employing ROC analysis, the area under the curves of the panel in these both cohorts were 0.840 and 0.856, respectively, which outperform that of any single biomarker (PCA3: 0.733 and 0.739; TMPRSS2: ERG: 0.720 and 0.732; Annexin A3: 0.716 and 0.728; Sarcosine: 0.659 and 0.665, respectively).
Compared with single biomarker, the multiplex model including PCA3, TMPRSS2: ERG, Annexin A3 and Sarcosine adds even more to the diagnostic performance for predicting CaP. Further validation experiments and optimization for the strategy of constructing this model are warranted.
与单一生物标志物(例如前列腺特异性抗原,PSA)相比,基于尿液的多重分析在预测前列腺癌(CaP)方面表现更为出色,但需要对其联合模式进行全面优化。我们的目的是确定是否可以将基于基因、蛋白、代谢物的标志物与尿液中的阳性、阴性标志物相结合,优化用于检测 CaP 的多重模型。
使用定量 PCR、Western blot 和液相色谱-质谱联用技术,评估了 86 例未经治疗的 CaP 患者和 45 例无恶性肿瘤证据的患者尿液中 PCA3、TMPRSS2: ERG、膜联蛋白 A3、肌氨酸和尿 PSA 的表达模式。采用多变量逻辑回归分析生成最终模型,并采用接收者操作特征(ROC)分析和特殊引导软件评估测试变量的诊断性能。
PCA3、TMPRSS2: ERG、膜联蛋白 A3、肌氨酸和包含这些生物标志物的标志物组合在 PSA 4-10ng/ml 患者和所有患者中均是 CaP 的显著预测因子(均 P<0.05)。采用 ROC 分析,该组合在这两个队列中的曲线下面积分别为 0.840 和 0.856,均优于任何单一生物标志物(PCA3:0.733 和 0.739;TMPRSS2: ERG:0.720 和 0.732;膜联蛋白 A3:0.716 和 0.728;肌氨酸:0.659 和 0.665)。
与单一生物标志物相比,包含 PCA3、TMPRSS2: ERG、膜联蛋白 A3 和肌氨酸的多重模型在预测 CaP 方面的诊断性能更高。需要进一步验证实验和优化该模型的构建策略。