Suppr超能文献

前列腺癌的代谢组学生物标志物:一项系统综述。

Metabolomics Biomarkers of Prostate Cancer: A Systematic Review.

作者信息

Kdadra Marouane, Höckner Sebastian, Leung Hing, Kremer Werner, Schiffer Eric

机构信息

Numares AG, Am BioPark 9, 93053 Regensburg, Germany.

Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK.

出版信息

Diagnostics (Basel). 2019 Feb 19;9(1):21. doi: 10.3390/diagnostics9010021.

Abstract

Prostate cancer (PCa) diagnosis with current biomarkers is difficult and often results in unnecessary invasive procedures as well as over-diagnosis and over-treatment, highlighting the need for novel biomarkers. The aim of this review is to provide a summary of available metabolomics PCa biomarkers, particularly for clinically significant disease. A systematic search was conducted on PubMed for publications from July 2008 to July 2018 in accordance with PRISMA guidelines to report biomarkers with respect to their application in PCa diagnosis, progression, aggressiveness, recurrence, and treatment response. The vast majority of studies report biomarkers with the ability to distinguish malignant from benign prostate tissue with a few studies investigating biomarkers associated with disease progression, treatment response or tumour recurrence. In general, these studies report high dimensional datasets and the number of analysed metabolites often significantly exceeded the number of available samples. Hence, observed multivariate differences between case and control samples in the datasets might potentially also be associated with pre-analytical, technical, statistical and confounding factors. Giving the technical and methodological hurdles, there are nevertheless a number of metabolites and pathways repeatedly reported across various technical approaches, cohorts and sample types that appear to play a predominant role in PCa tumour biology, progression and recurrence.

摘要

利用当前的生物标志物诊断前列腺癌(PCa)存在困难,常常导致不必要的侵入性检查以及过度诊断和过度治疗,这凸显了新型生物标志物的必要性。本综述的目的是总结现有的代谢组学PCa生物标志物,尤其是针对具有临床意义的疾病。按照PRISMA指南,在PubMed上对2008年7月至2018年7月期间的出版物进行了系统检索,以报告生物标志物在PCa诊断、进展、侵袭性、复发和治疗反应方面的应用情况。绝大多数研究报告了能够区分前列腺恶性组织和良性组织的生物标志物,只有少数研究调查了与疾病进展、治疗反应或肿瘤复发相关的生物标志物。总体而言,这些研究报告的是高维数据集,分析的代谢物数量常常显著超过可用样本数量。因此,数据集中病例样本与对照样本之间观察到的多变量差异可能也与分析前、技术、统计和混杂因素有关。尽管存在技术和方法上的障碍,但在各种技术方法、队列和样本类型中反复报告的一些代谢物和途径,似乎在PCa肿瘤生物学、进展和复发中起主要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/893e/6468767/b281e006f01c/diagnostics-09-00021-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验