Suppr超能文献

人 DNA 聚合酶 ι有效掺入 dTTP 对 O6-甲基鸟嘌呤的结构基础。

Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota.

机构信息

Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.

出版信息

J Biol Chem. 2010 Dec 24;285(52):40666-72. doi: 10.1074/jbc.M110.183665. Epub 2010 Oct 20.

Abstract

O(6)-methylguanine (O(6)-methylG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, even physiological ones (e.g. S-adenosylmethionine). The efficiency of a truncated, catalytic DNA polymerase ι core enzyme was determined for nucleoside triphosphate incorporation opposite O(6)-methylG, using steady-state kinetic analyses. The results presented here corroborate previous work from this laboratory using full-length pol ι, which showed that dTTP incorporation occurs with high efficiency opposite O(6)-methylG. Misincorporation of dTTP opposite O(6)-methylG occurred with ∼6-fold higher efficiency than incorporation of dCTP. Crystal structures of the truncated form of pol ι with O(6)-methylG as the template base and incoming dCTP or dTTP were solved and showed that O(6)-methylG is rotated into the syn conformation in the pol ι active site and that dTTP misincorporation by pol ι is the result of Hoogsteen base pairing with the adduct. Both dCTP and dTTP base paired with the Hoogsteen edge of O(6)-methylG. A single, short hydrogen bond formed between the N3 atom of dTTP and the N7 atom of O(6)-methylG. Protonation of the N3 atom of dCTP and bifurcation of the N3 hydrogen between the N7 and O(6) atoms of O(6)-methylG allow base pairing of the lesion with dCTP. We conclude that differences in the Hoogsteen hydrogen bonding between nucleotides is the main factor in the preferential selectivity of dTTP opposite O(6)-methylG by human pol ι, in contrast to the mispairing modes observed previously for O(6)-methylG in the structures of the model DNA polymerases Sulfolobus solfataricus Dpo4 and Bacillus stearothermophilus DNA polymerase I.

摘要

O(6)-甲基鸟嘌呤(O(6)-甲基 G)具有高度的诱变作用,并且通常存在于暴露于甲基化剂的 DNA 中,甚至是生理甲基化剂(例如 S-腺苷甲硫氨酸)。使用稳态动力学分析,测定了截短的催化 DNA 聚合酶 ι 核心酶对核苷三磷酸掺入 O(6)-甲基 G 对的效率。这里呈现的结果与本实验室使用全长 pol ι 进行的先前工作相吻合,该工作表明 dTTP 掺入 O(6)-甲基 G 对的效率很高。dTTP 掺入 O(6)-甲基 G 对的效率比 dCTP 掺入高约 6 倍。与模板碱基 O(6)-甲基 G 和进入的 dCTP 或 dTTP 一起解决的 pol ι 截断形式的晶体结构表明,O(6)-甲基 G 在 pol ι 活性位点中旋转到顺式构象,并且 pol ι 的 dTTP 错误掺入是与加合物形成 Hoogsteen 碱基对的结果。dCTP 和 dTTP 均与 O(6)-甲基 G 的 Hoogsteen 边缘碱基配对。dTTP 的 N3 原子和 O(6)-甲基 G 的 N7 原子之间形成单个短氢键。dCTP 的 N3 原子质子化和 N3 氢在 O(6)-甲基 G 的 N7 和 O(6)原子之间分叉,允许损伤与 dCTP 碱基配对。我们得出的结论是,核苷酸之间 Hoogsteen 氢键的差异是人类 pol ι 对 O(6)-甲基 G 具有选择性的主要因素,与先前在 Sulfolobus solfataricus Dpo4 和 Bacillus stearothermophilus DNA 聚合酶 I 的模型 DNA 聚合酶结构中观察到的 O(6)-甲基 G 错配模式相反。

相似文献

1
Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota.
J Biol Chem. 2010 Dec 24;285(52):40666-72. doi: 10.1074/jbc.M110.183665. Epub 2010 Oct 20.
2
Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2'-deoxyguanosine by Human DNA Polymerase η.
J Biol Chem. 2016 Nov 11;291(46):24304-24313. doi: 10.1074/jbc.M116.755462. Epub 2016 Sep 30.
4
Basis of miscoding of the DNA adduct N2,3-ethenoguanine by human Y-family DNA polymerases.
J Biol Chem. 2012 Oct 12;287(42):35516-35526. doi: 10.1074/jbc.M112.403253. Epub 2012 Aug 21.
7
Kinetic evidence for inefficient and error-prone bypass across bulky N2-guanine DNA adducts by human DNA polymerase iota.
J Biol Chem. 2006 May 5;281(18):12315-24. doi: 10.1074/jbc.M600112200. Epub 2006 Mar 8.
8
Hoogsteen base pair formation promotes synthesis opposite the 1,N6-ethenodeoxyadenosine lesion by human DNA polymerase iota.
Nat Struct Mol Biol. 2006 Jul;13(7):619-25. doi: 10.1038/nsmb1118. Epub 2006 Jul 2.
10

引用本文的文献

2
Conformation and Pairing Properties of an -Methyl-2'-deoxyguanosine-Directed Benzimidazole Nucleoside Analog in Duplex DNA.
Chem Res Toxicol. 2022 Oct 17;35(10):1903-1913. doi: 10.1021/acs.chemrestox.2c00165. Epub 2022 Aug 16.
3
Insights into the substrate discrimination mechanisms of methyl-CpG-binding domain 4.
Biochem J. 2021 May 28;478(10):1985-1997. doi: 10.1042/BCJ20210017.
4
Enzymatic bypass of an N-deoxyadenosine DNA-ethylene dibromide-peptide cross-link by translesion DNA polymerases.
J Biol Chem. 2021 Jan-Jun;296:100444. doi: 10.1016/j.jbc.2021.100444. Epub 2021 Feb 20.
5
Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine.
Nucleic Acids Res. 2020 May 21;48(9):5119-5134. doi: 10.1093/nar/gkaa193.
6
Structure and function relationships in mammalian DNA polymerases.
Cell Mol Life Sci. 2020 Jan;77(1):35-59. doi: 10.1007/s00018-019-03368-y. Epub 2019 Nov 13.
7
Bypass of the Major Alkylative DNA Lesion by Human DNA Polymerase η.
Molecules. 2019 Oct 31;24(21):3928. doi: 10.3390/molecules24213928.
8
The abundant DNA adduct -methyl deoxyguanosine contributes to miscoding during replication by human DNA polymerase η.
J Biol Chem. 2019 Jun 28;294(26):10253-10265. doi: 10.1074/jbc.RA119.008986. Epub 2019 May 17.
9
Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases.
J Am Chem Soc. 2019 Mar 20;141(11):4584-4596. doi: 10.1021/jacs.8b08551. Epub 2019 Mar 7.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
Structure of human DNA polymerase kappa inserting dATP opposite an 8-OxoG DNA lesion.
PLoS One. 2009 Jun 2;4(6):e5766. doi: 10.1371/journal.pone.0005766.
5
Lesion bypass of N2-ethylguanine by human DNA polymerase iota.
J Biol Chem. 2009 Jan 16;284(3):1732-40. doi: 10.1074/jbc.M807296200. Epub 2008 Nov 3.
7
Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass.
Mol Cell. 2007 Feb 23;25(4):601-14. doi: 10.1016/j.molcel.2007.01.018.
8
The structural basis for the mutagenicity of O(6)-methyl-guanine lesions.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19701-6. doi: 10.1073/pnas.0609580103. Epub 2006 Dec 18.
10
Translesion synthesis across O6-alkylguanine DNA adducts by recombinant human DNA polymerases.
J Biol Chem. 2006 Dec 15;281(50):38244-56. doi: 10.1074/jbc.M608369200. Epub 2006 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验