Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
J Biol Chem. 2010 Dec 24;285(52):40666-72. doi: 10.1074/jbc.M110.183665. Epub 2010 Oct 20.
O(6)-methylguanine (O(6)-methylG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, even physiological ones (e.g. S-adenosylmethionine). The efficiency of a truncated, catalytic DNA polymerase ι core enzyme was determined for nucleoside triphosphate incorporation opposite O(6)-methylG, using steady-state kinetic analyses. The results presented here corroborate previous work from this laboratory using full-length pol ι, which showed that dTTP incorporation occurs with high efficiency opposite O(6)-methylG. Misincorporation of dTTP opposite O(6)-methylG occurred with ∼6-fold higher efficiency than incorporation of dCTP. Crystal structures of the truncated form of pol ι with O(6)-methylG as the template base and incoming dCTP or dTTP were solved and showed that O(6)-methylG is rotated into the syn conformation in the pol ι active site and that dTTP misincorporation by pol ι is the result of Hoogsteen base pairing with the adduct. Both dCTP and dTTP base paired with the Hoogsteen edge of O(6)-methylG. A single, short hydrogen bond formed between the N3 atom of dTTP and the N7 atom of O(6)-methylG. Protonation of the N3 atom of dCTP and bifurcation of the N3 hydrogen between the N7 and O(6) atoms of O(6)-methylG allow base pairing of the lesion with dCTP. We conclude that differences in the Hoogsteen hydrogen bonding between nucleotides is the main factor in the preferential selectivity of dTTP opposite O(6)-methylG by human pol ι, in contrast to the mispairing modes observed previously for O(6)-methylG in the structures of the model DNA polymerases Sulfolobus solfataricus Dpo4 and Bacillus stearothermophilus DNA polymerase I.
O(6)-甲基鸟嘌呤(O(6)-甲基 G)具有高度的诱变作用,并且通常存在于暴露于甲基化剂的 DNA 中,甚至是生理甲基化剂(例如 S-腺苷甲硫氨酸)。使用稳态动力学分析,测定了截短的催化 DNA 聚合酶 ι 核心酶对核苷三磷酸掺入 O(6)-甲基 G 对的效率。这里呈现的结果与本实验室使用全长 pol ι 进行的先前工作相吻合,该工作表明 dTTP 掺入 O(6)-甲基 G 对的效率很高。dTTP 掺入 O(6)-甲基 G 对的效率比 dCTP 掺入高约 6 倍。与模板碱基 O(6)-甲基 G 和进入的 dCTP 或 dTTP 一起解决的 pol ι 截断形式的晶体结构表明,O(6)-甲基 G 在 pol ι 活性位点中旋转到顺式构象,并且 pol ι 的 dTTP 错误掺入是与加合物形成 Hoogsteen 碱基对的结果。dCTP 和 dTTP 均与 O(6)-甲基 G 的 Hoogsteen 边缘碱基配对。dTTP 的 N3 原子和 O(6)-甲基 G 的 N7 原子之间形成单个短氢键。dCTP 的 N3 原子质子化和 N3 氢在 O(6)-甲基 G 的 N7 和 O(6)原子之间分叉,允许损伤与 dCTP 碱基配对。我们得出的结论是,核苷酸之间 Hoogsteen 氢键的差异是人类 pol ι 对 O(6)-甲基 G 具有选择性的主要因素,与先前在 Sulfolobus solfataricus Dpo4 和 Bacillus stearothermophilus DNA 聚合酶 I 的模型 DNA 聚合酶结构中观察到的 O(6)-甲基 G 错配模式相反。