Johnson Robert E, Haracska Lajos, Prakash Louise, Prakash Satya
Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA.
Mol Cell Biol. 2006 Sep;26(17):6435-41. doi: 10.1128/MCB.00851-06.
Human DNA polymerase iota (Pol iota) differs from other DNA polymerases in that it exhibits a marked template specificity, being more efficient and accurate opposite template purines than opposite pyrimidines. The crystal structures of Pol iota with template A and incoming dTTP and with template G and incoming dCTP have revealed that in the Pol iota active site, the templating purine adopts a syn conformation and forms a Hoogsteen base pair with the incoming pyrimidine which remains in the anti conformation. By using 2-aminopurine and purine as the templating residues, which retain the normal N7 position but lack the N(6) of an A or the O(6) of a G, here we provide evidence that whereas hydrogen bonding at N(6) is dispensable for the proficient incorporation of a T opposite template A, hydrogen bonding at O(6) is a prerequisite for C incorporation opposite template G. To further analyze the contributions of O(6) and N7 hydrogen bonding to DNA synthesis by Pol iota, we have examined its proficiency for replicating through the (6)O-methyl guanine and 8-oxoguanine lesions, which affect the O(6) and N7 positions of template G, respectively. We conclude from these studies that for proficient T incorporation opposite template A, only the N7 hydrogen bonding is required, but for proficient C incorporation opposite template G, hydrogen bonding at both the N7 and O(6) is an imperative. The dispensability of N(6) hydrogen bonding for proficient T incorporation opposite template A has important biological implications, as that would endow Pol iota with the ability to replicate through lesions which impair the Watson-Crick hydrogen bonding potential at both the N1 and N(6) positions of templating A.
人类DNA聚合酶iota(Pol iota)与其他DNA聚合酶不同,它表现出显著的模板特异性,与嘧啶相比,在嘌呤模板上更高效、准确。Pol iota与模板A和进入的dTTP以及与模板G和进入的dCTP的晶体结构表明,在Pol iota活性位点,模板嘌呤采取顺式构象,并与保持反式构象的进入嘧啶形成Hoogsteen碱基对。通过使用2-氨基嘌呤和嘌呤作为模板残基,它们保留了正常的N7位置,但缺少A的N(6)或G的O(6),我们在此提供证据表明,虽然N(6)处的氢键对于在模板A对面高效掺入T是可有可无的,但O(6)处的氢键是在模板G对面掺入C的先决条件。为了进一步分析O(6)和N7氢键对Pol iota进行DNA合成的贡献,我们研究了它通过(6)O-甲基鸟嘌呤和8-氧代鸟嘌呤损伤进行复制的能力,这两种损伤分别影响模板G的O(6)和N7位置。我们从这些研究中得出结论,对于在模板A对面高效掺入T,仅需要N7氢键,但对于在模板G对面高效掺入C,N7和O(6)处的氢键都是必不可少的。N(6)氢键对于在模板A对面高效掺入T的可有可无性具有重要的生物学意义,因为这将赋予Pol iota通过损害模板A的N1和N(6)位置的沃森-克里克氢键潜力的损伤进行复制的能力。