Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
Med Phys. 2010 Sep;37(9):5138-45. doi: 10.1118/1.3480507.
Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm3, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm3, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens.
A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm3) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm3 and the corresponding ash density measurements on the same specimens.
The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p < 0.001, ANCOVA) and 33% (p < 0.05, Tukey's HSD), on average, respectively. The BMD and TMD of cortical bone specimens measured using the HA-polymer phantom with an expanded range of HA density was significantly lower than the measured ash density by 8% (p < 0.001, ANCOVA) and 10% (p < 0.05, Tukey's HSD), on average, respectively.
The new HA-polymer calibration phantom with a less attenuating polymer and an expanded range of HA density resulted in a more accurate measurement of micro-CT equivalent BMD and TMD in human cortical bone specimens compared to a conventional phantom, as verified by ash density measurements on the same specimens.
微计算机断层扫描(micro-CT)作为一种非破坏性的替代灰化方法,越来越多地用于测量骨矿物质含量。体模用于将测量的 X 射线衰减校准到离散的矿物质密度水平,通常包括高达 1000mgHA/cm3 的水平,该水平涵盖了小梁骨中观察到的骨矿物质密度(BMD)水平。然而,皮质骨中观察到的 BMD 水平以及皮质骨和小梁骨中的组织矿物质密度(TMD)水平通常超过 1000mgHA/cm3,需要对校准回归进行外推,这可能会导致误差。因此,本研究的目的是调查(1)在衰减程度较低的聚合物基质中,X 射线衰减与羟磷灰石(HA)密度扩展范围之间的关系,以及(2)校准对随后测量人皮质骨标本矿化程度准确性的影响。
制备了一种新型的 HA-聚合物复合体模,由衰减程度较低的聚合物相(聚乙烯)和扩展的 HA 密度范围(0-1860mgHA/cm3)组成,其中包括皮质骨的典型 BMD 水平或皮质骨和小梁骨的 TMD 水平。使用新的 HA-聚合物校准体模测量皮质骨标本的 BMD 和 TMD,并与使用包含 0-800mgHA/cm3 的传统 HA-聚合物体模和同一标本的相应灰密度测量值进行比较。
HA-聚合物复合材料体模的 X 射线衰减与 HA 密度之间呈非线性关系,而不是通常先验采用的线性关系,并且在将测量的 X 射线衰减校准到高矿物质密度水平时,无需进行外推。使用传统体模测量的皮质骨标本的 BMD 和 TMD 分别比实测灰密度低 19%(p<0.001,ANCOVA)和 33%(p<0.05,Tukey's HSD),平均而言。使用具有扩展 HA 密度范围的 HA-聚合物体模测量的皮质骨标本的 BMD 和 TMD 分别比实测灰密度低 8%(p<0.001,ANCOVA)和 10%(p<0.05,Tukey's HSD),平均而言。
与传统体模相比,具有较低衰减聚合物和扩展 HA 密度范围的新型 HA-聚合物校准体模可更准确地测量人皮质骨标本的微 CT 等效 BMD 和 TMD,这通过对同一标本的灰密度测量得到验证。