Suppr超能文献

使用三维聚焦装置生成核壳微胶囊,以有效形成细胞球体。

Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.

机构信息

Nano-Bio Research Center, Korea Institute of Science and Technology, 136-791 Seoul, Korea.

出版信息

Lab Chip. 2011 Jan 21;11(2):246-52. doi: 10.1039/c0lc00036a. Epub 2010 Oct 21.

Abstract

We present a microfluidic device generating three-dimensional (3D) coaxial flow by the addition of a simple hillock to produce an alginate core-shell microcapsule for the efficient formation of a cell spheroid. A hillock tapered at downstream of the two-dimensional focusing channel enables outside flow to enclose the core flow. The aqueous solution in the core flow was focused and surrounded by 1.8% alginate solution to be solidified as a shell. The double-layered coaxial flow (aqueous phase) was broken up into a droplet by the shear flow of oleic acid (oil phase) containing calcium chloride for the polymerization of the alginate shell. The droplet generated from the laminar coaxial flow maintained a double-layer structure and gelation of the alginate solution made a core-shell microcapsule. The shell-thickness of the microcapsule was adjusted from 8-21 μm by the variation of two aqueous flow rates. The inner shape of the shell was almost spherical when the ratio of the water-glycol mixture in the core flow exceeded 20%. The microcapsule was used to form a spheroid of embryonic carcinoma cells (embryoid body; EB) by injecting a cell suspension into the core flow. The cells inside the microcapsule aggregated into an EB within 2 days and the EB formation rate was more than 80% with strong compaction. The microcapsule formed single spherical EBs without small satellite clusters or a bumpy shape as observed in solid microbeads. The microfluidic chip for encapsulation of cells could generate a number of EBs with high rate of EB formation when compared with the conventional hanging drop method. The core-shell microcapsule generated by 3D focusing in the microchannel was effective in forming large number of spherical cell clusters and the encapsulation of cells in the microcapsule is expected to be useful in the transplantation of islet cells or cancer stem cell enrichment.

摘要

我们提出了一种通过添加简单的丘陵来产生三维(3D)同轴流的微流控装置,以有效地形成细胞球体。在二维聚焦通道的下游,丘陵逐渐变细,使得外部流动包围核心流动。核心流中的水溶液被聚焦并被 1.8%的藻酸盐溶液包围以凝固为壳。双层同轴流(水相)被含有氯化钙的油酸(油相)的剪切流破坏,用于藻酸盐壳的聚合。由层流同轴流产生的液滴保持双层结构,并且藻酸盐溶液的凝胶化形成核壳微胶囊。通过改变两种水流量,可以将微胶囊的壳厚度从 8-21μm 进行调整。当核心流中的水-乙二醇混合物的比例超过 20%时,壳的内形状几乎为球形。通过将细胞悬浮液注入核心流中,将微胶囊用于形成胚胎癌细胞(胚状体; EB)的球体。细胞在微胶囊内聚集形成 EB,在 2 天内 EB 的形成率超过 80%,并且紧密压缩。与传统的悬滴法相比,微胶囊形成的微球具有较高的 EB 形成率,可以生成大量的 EB。与传统的悬滴法相比,微通道中 3D 聚焦产生的核壳微胶囊在形成大量球形细胞簇方面非常有效,并且细胞的封装有望在胰岛细胞移植或癌症干细胞富集中得到应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验