Pochapsky S S, VanBrocklin H F, Welch M J, Katzenellenbogen J A
Department of Chemistry, University of Illinois, Urbana 61801.
Bioconjug Chem. 1990 Jul-Aug;1(4):231-44. doi: 10.1021/bc00004a002.
A versatile method for the synthesis of trifluoro fatty acids, potential metabolically blocked myocardial imaging agents, has been developed. Two trifluorohexadecanoic (palmitic) acids have been prepared [6,6,16-trifluorohexadecanoic acid (I) and 7,7,16-trifluorohexadecanoic acid (II)], each of which bears two of the fluorine atoms as a gem-difluoromethylene unit on the fatty acid chain (at C-6 or C-7) and the third at the omega (C-16) position. The metabolic stability of carbon-fluorine bonds suggests the gem-difluoro group may block the beta-oxidation pathway, while the terminal fluorine could be the site for labeling with fluorine-18. The convergent synthetic approach utilizes a 2-lithio-1,3-dithiane derived from 10-undecenal or 9-decenal, which is alkylated with the OBO (oxabicyclooctyl) ester of 5-bromopentanoic acid or 6-bromohexanoic acid, respectively. Hydroboration-oxidation and alcohol protection are followed by halofluorination to convert the 1,3-dithiane system to a gem-difluoro group. The third fluorine is introduced by fluoride ion displacement of a trifluoromethanesulfonate. This synthesis is adapted to the labeling of these trifluoro fatty acids with the short-lived radionuclide fluorine-18 (t1/2 = 110 min), with the third fluorine introduced as fluoride ion in the penultimate step. The radiochemical syntheses proceed in 3-34% radiochemical yield (decay corrected), with an overall synthesis and purification time of 90 min. Tissue distribution studies in rats were performed with I and II, as well as with 16-[18F]fluoropalmitic acid (III), [11C]palmitic acid, and [11C]octanoic acid. The heart uptake of the fluoropalmitic acids decreases with substitution, the 2-min activity level for 16-fluoropalmitic acid being 65% and that for both 6,6,16- and 7,7,17-trifluoropalmitic acids being 30% that of palmitic acid. Fluorine substitution results in some alteration in the retention of activity by the heart: 16-fluoropalmitate actually clears more rapidly than palmitate, but the two trifluoropalmitates (particularly 6,6,16-trifluoropalmitate, I) show somewhat slower clearance of activity, although the improvement of I over palmitate is only modest. There is considerable accumulation of activity in the bone after administration of the fluorine-18 labeled fatty acids, suggestive of metabolic defluorination. These results indicate that fluorine substitution alters the physicochemical properties of the fatty acid so that uptake by the myocardium is diminished. Furthermore, while the gem-difluoro substituents at C-6 and C-7 may block beta-oxidation, the chain-terminal radiofluorine substituent is subject to omega-oxidation that releases it as fluoride ion.
已开发出一种通用方法来合成三氟脂肪酸,即潜在的代谢阻断型心肌显像剂。已制备出两种三氟十六烷酸(棕榈酸)[6,6,16 - 三氟十六烷酸(I)和7,7,16 - 三氟十六烷酸(II)],它们在脂肪酸链上(C - 6或C - 7)均带有两个作为偕二氟亚甲基单元的氟原子,第三个氟原子位于ω(C - 16)位。碳 - 氟键的代谢稳定性表明偕二氟基团可能阻断β - 氧化途径,而末端氟原子可能是用氟 - 18标记的位点。该汇聚合成方法利用了由10 - 十一碳烯醛或9 - 癸烯醛衍生的2 - 锂代 - 1,3 - 二硫戊环,分别用5 - 溴戊酸或6 - 溴己酸的OBO(氧杂双环辛基)酯对其进行烷基化。硼氢化 - 氧化和醇保护之后进行卤氟化,将1,3 - 二硫戊环体系转化为偕二氟基团。通过三氟甲磺酸酯的氟离子取代引入第三个氟原子。这种合成方法适用于用短寿命放射性核素氟 - 18(t1/2 = 110分钟)对这些三氟脂肪酸进行标记,在倒数第二步中作为氟离子引入第三个氟原子。放射化学合成的放射化学产率为3 - 34%(衰变校正),总合成和纯化时间为90分钟。用I和II以及16 - [18F]氟棕榈酸(III)、[11C]棕榈酸和[11C]辛酸对大鼠进行了组织分布研究。氟棕榈酸的心脏摄取量随取代作用而降低,16 - 氟棕榈酸的2分钟活性水平为棕榈酸的65%,6,6,16 - 和7,7,17 - 三氟棕榈酸的2分钟活性水平均为棕榈酸的30%。氟取代导致心脏对活性的保留有所改变:16 - 氟棕榈酸盐实际上比棕榈酸盐清除得更快,但两种三氟棕榈酸盐(特别是6,6,16 - 三氟棕榈酸盐,I)的活性清除稍慢,尽管I相对于棕榈酸盐的改善仅为适度。给予氟 - 18标记的脂肪酸后,骨中有相当量的活性积累,提示代谢性脱氟。这些结果表明氟取代改变了脂肪酸的物理化学性质从而使心肌摄取减少。此外,虽然C - 6和C - 7处的偕二氟取代基可能阻断β - 氧化,但链末端的放射性氟取代基会发生ω - 氧化并以氟离子形式释放出来。