Suppr超能文献

建模用于流行病学研究的空气污染——第二部分:通过土地利用回归预测时间变化。

Modelling air pollution for epidemiologic research--part II: predicting temporal variation through land use regression.

机构信息

Centre for Occupational and Environmental Health, School of Community Based Medicine, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

出版信息

Sci Total Environ. 2010 Dec 1;409(1):211-7. doi: 10.1016/j.scitotenv.2010.10.005. Epub 2010 Oct 20.

Abstract

Over recent years land use regression (LUR) has become a frequently used method in air pollution exposure studies, as it can model intra-urban variation in pollutant concentrations at a fine spatial scale. However, very few studies have used the LUR methodology to also model the temporal variation in air pollution exposure. The aim of this study is to estimate annual mean NO(2) and PM(10) concentrations from 1996 to 2008 for Greater Manchester using land use regression models. The results from these models will be used in the Manchester Asthma and Allergy Study (MAAS) birth cohort to determine health effects of air pollution exposure. The Greater Manchester LUR model for 2005 was recalibrated using interpolated and adjusted NO(2) and PM(10) concentrations as dependent variables for 1996-2008. In addition, temporally resolved variables were available for traffic intensity and PM(10) emissions. To validate the resulting LUR models, they were applied to the locations of automatic monitoring stations and the estimated concentrations were compared against measured concentrations. The 2005 LUR models were successfully recalibrated, providing individual models for each year from 1996 to 2008. When applied to the monitoring stations the mean prediction error (MPE) for NO(2) concentrations for all stations and years was -0.8μg/m³ and the root mean squared error (RMSE) was 6.7μg/m³. For PM(10) concentrations the MPE was 0.8μg/m³ and the RMSE was 3.4μg/m³. These results indicate that it is possible to model temporal variation in air pollution through LUR with relatively small prediction errors. It is likely that most previous LUR studies did not include temporal variation, because they were based on short term monitoring campaigns and did not have historic pollution data. The advantage of this study is that it uses data from an air dispersion model, which provided concentrations for 2005 and 2010, and therefore allowed extrapolation over a longer time period.

摘要

近年来,土地利用回归(LUR)已成为空气污染暴露研究中常用的方法,因为它可以在精细的空间尺度上模拟城市内污染物浓度的变化。然而,很少有研究使用 LUR 方法来模拟空气污染暴露的时间变化。本研究的目的是使用土地利用回归模型估计大曼彻斯特地区 1996 年至 2008 年的年平均二氧化氮(NO2)和 PM10 浓度。这些模型的结果将用于曼彻斯特哮喘和过敏研究(MAAS)出生队列,以确定空气污染暴露对健康的影响。2005 年大曼彻斯特 LUR 模型使用插值和调整后的 NO2 和 PM10 浓度作为因变量进行了重新校准,用于 1996 年至 2008 年。此外,还提供了交通强度和 PM10 排放的时间分辨变量。为了验证所得 LUR 模型,将其应用于自动监测站的位置,并将估计的浓度与测量的浓度进行比较。2005 年的 LUR 模型成功地进行了重新校准,为 1996 年至 2008 年的每一年提供了单独的模型。当应用于监测站时,所有站点和年份的二氧化氮浓度的平均预测误差(MPE)为-0.8μg/m³,均方根误差(RMSE)为 6.7μg/m³。对于 PM10 浓度,MPE 为 0.8μg/m³,RMSE 为 3.4μg/m³。这些结果表明,通过 LUR 以相对较小的预测误差来模拟空气污染的时间变化是可能的。很可能大多数以前的 LUR 研究都没有包括时间变化,因为它们基于短期监测活动,并且没有历史污染数据。本研究的优势在于它使用了空气扩散模型的数据,该模型提供了 2005 年和 2010 年的浓度,因此可以在更长的时间段内进行外推。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验