Suppr超能文献

中国兰州复杂城市核心区二氧化氮和细颗粒物的土地利用回归模型。

A land use regression model of nitrogen dioxide and fine particulate matter in a complex urban core in Lanzhou, China.

机构信息

School of Forestry and Environmental Studies, Yale University, 195 Prospect St, New Haven, CT, 06511, USA.

Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD, 21205, USA.

出版信息

Environ Res. 2019 Oct;177:108597. doi: 10.1016/j.envres.2019.108597. Epub 2019 Jul 22.

Abstract

BACKGROUND

Land use regression (LUR) models have been widely used to estimate air pollution exposures at high spatial resolution. However, few LUR models were developed for rapidly developing urban cores, which have substantially higher densities of population and built-up areas than the surrounding areas within a city's administrative boundary. Further, few studies incorporated vertical variations of air pollution in exposure assessment, which might be important to estimate exposures for people living in high-rise buildings.

OBJECTIVE

A LUR model was developed for the urban core of Lanzhou, China, along with a model of vertical concentration gradients in high-rise buildings.

METHODS

In each of four seasons in 2016-2017, NO was measured using Ogawa badges for 2 weeks at 75 ground-level sites. PM was measured using DataRAM for shorter time intervals at a subset (N = 38) of the 75 sites. Vertical profile measurements were conducted on 9 stories at 2 high-rise buildings (N = 18), with one building facing traffic and another facing away from traffic. The average seasonal concentrations of NO and PM at ground level were regressed against spatial predictors, including elevation, population, road network, land cover, and land use. The vertical variations were investigated and linked to ground-level predictions with exponential models.

RESULTS

We developed robust LUR models at the ground level for estimated annual averages of NO (R: 0.71, adjusted R: 0.67, and Leave-One-Out Cross Validation (LOOCV) R: 0.64) and PM (R: 0.77, adjusted R: of 0.73, and LOOCV R: 0.67) in the urban core of Lanzhou, China. The LUR models for the estimated seasonal averages of NO showed similar patterns. Vertical variation of NO and PM differed by windows orientation with respect to traffic, by season or by time of a day. Vertical variation functions incorporated the ground-level LUR predictions, in a form that could allow for exposure assessment in future epidemiological investigations.

CONCLUSIONS

Ground-level NO and PM showed substantial spatial variations, explained by traffic and land use patterns. Further, vertical variation of air pollution levels is significant under certain conditions, suggesting that exposure misclassification could occur with traditional LUR that ignores vertical variation. More studies are needed to fully characterize three-dimensional concentration patterns to accurately estimate air pollution exposures for residents in high-rise buildings, but our LUR models reinforce that concentration heterogeneity is not captured by the limited government monitors in the Lanzhou urban area.

摘要

背景

土地利用回归(LUR)模型已被广泛用于以高空间分辨率估算空气污染暴露。然而,很少有 LUR 模型用于快速发展的城市核心区,这些地区的人口密度和建成区密度远高于城市行政边界内的周边地区。此外,很少有研究将空气污染的垂直变化纳入暴露评估中,而这对于估算居住在高层建筑中的人们的暴露量可能很重要。

目的

开发了中国兰州城市核心区的 LUR 模型以及高层建筑中垂直浓度梯度模型。

方法

在 2016-2017 年的每个季节,使用 Ogawa 徽章在 75 个地面站点测量了 2 周的 NO。在 75 个站点中的一部分(N=38),使用 DataRAM 进行了更短时间间隔的 PM 测量。在 2 座高层建筑的 9 层楼进行了垂直剖面测量(N=18),其中一座建筑物面向交通,另一座建筑物则面向交通。将地面水平的 NO 和 PM 的季节性平均浓度回归到空间预测因子,包括海拔,人口,道路网络,土地覆盖和土地利用。研究了垂直变化,并与地面预测值建立了指数模型。

结果

我们在中国兰州城市核心区建立了稳健的 LUR 模型,用于估算 NO 的年平均值(R:0.71,调整 R:0.67,遗漏值交叉验证(LOOCV)R:0.64)和 PM(R:0.77,调整 R:0.73,LOOCV R:0.67)。兰州城市核心区 NO 和 PM 的估算季节性平均值的 LUR 模型显示出相似的模式。NO 和 PM 的垂直变化因窗户相对于交通的方位,季节或一天中的时间而异。垂直变化函数包含地面水平的 LUR 预测,其形式可以允许在未来的流行病学研究中进行暴露评估。

结论

地面水平的 NO 和 PM 表现出明显的空间变化,这可以通过交通和土地利用模式来解释。此外,在某些条件下,空气污染水平的垂直变化非常明显,这表明忽略垂直变化的传统 LUR 可能会导致暴露分类错误。需要进一步研究以充分描述三维浓度模式,从而准确估算高层建筑居民的空气污染暴露量,但我们的 LUR 模型表明,兰州城市地区有限的政府监测器无法捕捉到浓度异质性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验