Suppr超能文献

解析葡萄糖-6-磷酸在 glmS 核酶的核糖体开关作用中的角色。

Deciphering the role of glucosamine-6-phosphate in the riboswitch action of glmS ribozyme.

机构信息

Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, USA.

出版信息

RNA. 2010 Dec;16(12):2455-63. doi: 10.1261/rna.2334110. Epub 2010 Oct 22.

Abstract

The GlmS ribozyme is believed to exploit a general acid-base catalytic mechanism in the presence of glucosamine-6-phosphate (GlcN6P) to accelerate self-cleavage by approximately six orders of magnitude. The general acid and general base are not known, and the role of the GlcN6P cofactor is even less well understood. The amine group of GlcN6P has the ability to either accept or donate a proton and could therefore potentially act as an acid or a base. In order to decipher the role of GlcN6P in the self-cleavage of glmS, we have determined the preferred protonation state of the amine group in the wild-type and an inactive G40A mutant using molecular dynamics simulations and free energy calculations. Here we show that, upon binding of GlcN6P to wild-type glmS, the pK(a) of the amine moiety is altered by the active site environment, decreasing by about 2.2 from a solution pK(a) of about 8.2. On the other hand, we show that the pK(a) of the amine group slightly increases to about 8.4 upon binding to the G40A inactive mutant of glmS. These results suggest that GlcN6P acts as a general acid in the self-cleavage of glmS. Upon binding to glmS, GlcN6P can easily release a proton to the 5'-oxygen of G1 during self-cleavage of the backbone phosphodiester bond. However, in the G40A inactive mutant of glmS, the results suggest that the ability of GlcN6P to easily release its proton is diminished, in addition to the possible lack of G40 as an effective base.

摘要

GlmS 核酶被认为在葡萄糖胺-6-磷酸 (GlcN6P) 的存在下利用一种通用酸碱催化机制来加速自身切割,大约提高了六个数量级。目前还不知道通用酸和通用碱是什么,而 GlcN6P 辅因子的作用就更不为人所知了。GlcN6P 的氨基既有接受质子的能力,也有提供质子的能力,因此它可能既可以作为酸,也可以作为碱。为了解决 GlcN6P 在 glmS 自我切割中的作用,我们使用分子动力学模拟和自由能计算来确定野生型和无活性 G40A 突变体中氨基的质子化状态。结果表明,GlcN6P 与野生型 glmS 结合后,其氨基的 pKa 值会受到活性位点环境的影响,从约 8.2 的溶液 pKa 值降低约 2.2。另一方面,我们发现 GlcN6P 与 glmS 的 G40A 无活性突变体结合后,其氨基的 pKa 值略微增加到约 8.4。这些结果表明,GlcN6P 在 glmS 的自我切割中充当了一种通用酸。GlcN6P 与 glmS 结合后,在自身磷酸二酯键切割过程中,可以很容易地将质子释放到 G1 的 5'-氧上。然而,在 glmS 的 G40A 无活性突变体中,结果表明 GlcN6P 释放质子的能力减弱,同时可能缺乏 G40 作为有效碱。

相似文献

1
Deciphering the role of glucosamine-6-phosphate in the riboswitch action of glmS ribozyme.
RNA. 2010 Dec;16(12):2455-63. doi: 10.1261/rna.2334110. Epub 2010 Oct 22.
2
The glmS ribozyme tunes the catalytically critical pK(a) of its coenzyme glucosamine-6-phosphate.
J Am Chem Soc. 2011 Sep 14;133(36):14188-91. doi: 10.1021/ja205185g. Epub 2011 Aug 22.
3
glmS Riboswitch binding to the glucosamine-6-phosphate α-anomer shifts the pKa toward neutrality.
Biochemistry. 2011 Aug 23;50(33):7236-42. doi: 10.1021/bi200471c. Epub 2011 Jul 27.
6
Trans-acting glmS catalytic riboswitch: locked and loaded.
RNA. 2007 Apr;13(4):468-77. doi: 10.1261/rna.341807. Epub 2007 Feb 5.
7
Phosphatase-inert glucosamine 6-phosphate mimics serve as actuators of the glmS riboswitch.
ACS Chem Biol. 2014 Dec 19;9(12):2875-82. doi: 10.1021/cb500458f. Epub 2014 Oct 27.
8
The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme.
Nat Chem Biol. 2017 Apr;13(4):439-445. doi: 10.1038/nchembio.2300. Epub 2017 Feb 13.
9
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage.
Biopolymers. 2015 Oct;103(10):550-62. doi: 10.1002/bip.22657.
10
Analysis of metal ion dependence in glmS ribozyme self-cleavage and coenzyme binding.
Chembiochem. 2010 Dec 10;11(18):2567-71. doi: 10.1002/cbic.201000544.

引用本文的文献

1
A Riboswitch-Driven Era of New Antibacterials.
Antibiotics (Basel). 2022 Sep 13;11(9):1243. doi: 10.3390/antibiotics11091243.
2
Riboswitches as Drug Targets for Antibiotics.
Antibiotics (Basel). 2021 Jan 5;10(1):45. doi: 10.3390/antibiotics10010045.
3
Elucidation of Catalytic Strategies of Small Nucleolytic Ribozymes From Comparative Analysis of Active Sites.
ACS Catal. 2018 Jan 5;8(1):314-327. doi: 10.1021/acscatal.7b02976. Epub 2017 Dec 8.
5
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
6
Divalent Metal Ion Activation of a Guanine General Base in the Hammerhead Ribozyme: Insights from Molecular Simulations.
Biochemistry. 2017 Jun 20;56(24):2985-2994. doi: 10.1021/acs.biochem.6b01192. Epub 2017 Jun 12.
7
Assessing the Potential Effects of Active Site Mg Ions in the glmS Ribozyme-Cofactor Complex.
J Phys Chem Lett. 2016 Oct 6;7(19):3984-3988. doi: 10.1021/acs.jpclett.6b01854. Epub 2016 Sep 28.
8
Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics.
RNA. 2015 Nov;21(11):1898-907. doi: 10.1261/rna.051367.115. Epub 2015 Sep 14.
9
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage.
Biopolymers. 2015 Oct;103(10):550-62. doi: 10.1002/bip.22657.

本文引用的文献

1
Value of general Acid-base catalysis to ribonuclease a.
J Am Chem Soc. 1994 Jun;116(12):5467-8. doi: 10.1021/ja00091a060.
2
The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA.
Q Rev Biophys. 2010 Nov;43(4):423-47. doi: 10.1017/S0033583510000144. Epub 2010 Sep 8.
4
Atomistic basis for the on-off signaling mechanism in SAM-II riboswitch.
Nucleic Acids Res. 2010 Mar;38(4):1392-400. doi: 10.1093/nar/gkp1106. Epub 2009 Dec 7.
8
The ionic environment determines ribozyme cleavage rate by modulation of nucleobase pK a.
RNA. 2008 Sep;14(9):1942-9. doi: 10.1261/rna.1102308. Epub 2008 Aug 12.
9
pKa of residue 66 in Staphylococal nuclease. I. Insights from QM/MM simulations with conventional sampling.
J Phys Chem B. 2008 Jul 17;112(28):8387-97. doi: 10.1021/jp800168z. Epub 2008 Jun 10.
10
Structure of the SAM-II riboswitch bound to S-adenosylmethionine.
Nat Struct Mol Biol. 2008 Feb;15(2):177-82. doi: 10.1038/nsmb.1371. Epub 2008 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验