Suppr超能文献

胶原在存在羟磷灰石成核抑制剂时对骨磷灰石形成的作用。

The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.

机构信息

Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.

出版信息

Nat Mater. 2010 Dec;9(12):1004-9. doi: 10.1038/nmat2875. Epub 2010 Oct 24.

Abstract

Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67 nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins; however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.

摘要

骨是一种复合材料,其中胶原纤维形成支架,用于高度组织化的单轴取向的磷灰石晶体排列。在胶原纤维的周期性 67nm 交叉条纹图案中,密度较低的 40nm 长的间隙区域被认为是磷灰石晶体从无定形相开始成核并随后生长的地方。这一过程被认为是由高度酸性的非胶原蛋白指导的;然而,胶原基质在骨磷灰石矿化过程中的作用仍然未知。在这里,我们结合纳米级分辨率的低温传输电子显微镜和低温电子断层扫描与分子建模,表明胶原与羟基磷灰石成核抑制剂协同作用,主动控制矿化。胶原分子接近 C 末端的正净电荷促进了无定形磷酸钙(ACP)的渗透。此外,在间隙和重叠区域的带电荷氨基酸簇形成核位点,控制 ACP 转化为平行排列的取向磷灰石晶体。我们开发了一个模型,描述了胶原的结构、超分子组装和电荷分布如何在羟基磷灰石成核抑制剂存在的情况下控制矿化。

相似文献

1
The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.
Nat Mater. 2010 Dec;9(12):1004-9. doi: 10.1038/nmat2875. Epub 2010 Oct 24.
2
The role of prenucleation clusters in surface-induced calcium phosphate crystallization.
Nat Mater. 2010 Dec;9(12):1010-4. doi: 10.1038/nmat2900. Epub 2010 Nov 14.
3
Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen.
Connect Tissue Res. 2011 Jun;52(3):242-54. doi: 10.3109/03008207.2010.551567. Epub 2011 Mar 15.
4
Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels.
J Struct Biol. 2020 Oct 1;212(1):107592. doi: 10.1016/j.jsb.2020.107592. Epub 2020 Jul 28.
7
Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro.
J Biol Chem. 2004 Mar 19;279(12):11649-56. doi: 10.1074/jbc.M309296200. Epub 2003 Dec 29.
9
A search for apatite crystals in the gap zone of collagen fibrils in bone using dark-field illumination.
Bone. 2020 Jun;135:115304. doi: 10.1016/j.bone.2020.115304. Epub 2020 Mar 5.

引用本文的文献

1
Physical and chemical niche of human growth plate for polarized bone development.
Nat Commun. 2025 Aug 8;16(1):7328. doi: 10.1038/s41467-025-62711-z.
2
A pilot study of healing critical-sized calvarial defects by LL-37-generated monoosteophils.
Front Bioeng Biotechnol. 2025 Jul 14;13:1583496. doi: 10.3389/fbioe.2025.1583496. eCollection 2025.
3
Taking a closer look at matrix vesicle biogenesis.
J Bone Miner Res. 2025 Jul 28;40(8):931-945. doi: 10.1093/jbmr/zjaf076.
5
Self-supervised machine learning framework for high-throughput electron microscopy.
Sci Adv. 2025 Apr 4;11(14):eads5552. doi: 10.1126/sciadv.ads5552. Epub 2025 Apr 2.
6
Engineering a stem cell-embedded bilayer hydrogel with biomimetic collagen mineralization for tendon-bone interface healing.
Bioact Mater. 2025 Mar 10;49:207-217. doi: 10.1016/j.bioactmat.2025.03.001. eCollection 2025 Jul.
7
Mesoscale orchestration of collagen-based hierarchical mineralization.
Nat Commun. 2025 Feb 27;16(1):2041. doi: 10.1038/s41467-025-57189-8.
8
Poly(ADP-ribose) binding sites on collagen I fibrils for nucleating intrafibrillar bone mineral.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2414849122. doi: 10.1073/pnas.2414849122. Epub 2025 Feb 20.
9
Recent Advances in Barnacle-Inspired Biomaterials in the Field of Biomedical Research.
Materials (Basel). 2025 Jan 22;18(3):502. doi: 10.3390/ma18030502.
10
Matrix vesicle-inspired delivery system based on nanofibrous chitosan microspheres for enhanced bone regeneration.
Mater Today Bio. 2025 Jan 3;30:101448. doi: 10.1016/j.mtbio.2025.101448. eCollection 2025 Feb.

本文引用的文献

1
Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6316-21. doi: 10.1073/pnas.0914218107. Epub 2010 Mar 22.
2
Bio-inspired Synthesis of Mineralized Collagen Fibrils.
Cryst Growth Des. 2008 Aug;8(8):3084-3090. doi: 10.1021/cg800252f.
3
Mineralization by inhibitor exclusion: the calcification of collagen with fetuin.
J Biol Chem. 2009 Jun 19;284(25):17092-17101. doi: 10.1074/jbc.M109.007013. Epub 2009 May 4.
4
The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM.
Science. 2009 Mar 13;323(5920):1455-8. doi: 10.1126/science.1169434.
6
Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition.
Chem Rev. 2008 Nov;108(11):4670-93. doi: 10.1021/cr0782729. Epub 2008 Oct 3.
10
Microfibrillar structure of type I collagen in situ.
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9001-5. doi: 10.1073/pnas.0502718103. Epub 2006 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验