Shen Minjuan, Zhang Chunyan, Zhang Yangyang, Lu Danyang, Yuan Jian, Wang Zhiyong, Wu Mengjie, Zhu Mengqi, Chen Qianming
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
Nat Commun. 2025 Feb 27;16(1):2041. doi: 10.1038/s41467-025-57189-8.
Mesoscale building blocks are instrumental in bridging multilevel hierarchical mineralization, endowing macroscale entities with remarkable functionality and mechanical properties. However, the mechanism orchestrating the homogeneous morphology of mesoscale mineralized motifs in collagen-based hard tissues remains unknown. Here, utilizing avian tendons as a mineralization model, we reveal a robust correlation between the mesoscale mineralized spherules and the presence of phosvitin. By designing a phosvitin-stabilized biomineral cluster medium, we replicate the well-defined mesoscale spherical structure within collagen matrix in vitro and ex vivo. In-depth studies reveal that phosvitin undergoes a conformational transition in the presence of biominerals at physiological concentrations, and self-assembles into mineral-dense amyloid-like aggregates. The spatial binding of these mineral-dense aggregates to collagen serves as a template for guiding the formation of mineralized spherules on the mesoscale. On the nanoscale, this binding facilitates mineral precursor release and diffusion into the fibrils for intrafibrillar mineralization. This discovery underscores the pivotal role of phosvitin-biomineral aggregates in templating hierarchical mineralization from the mesoscale to the nanoscale. This study not only elucidates the intricate mechanism underlying the collagen-based mineralization hierarchy but also promotes a cutting-edge advance in highly biomimetic material design and regenerative medicine.
中尺度构建模块有助于连接多级层次矿化,赋予宏观实体显著的功能和力学性能。然而,在基于胶原蛋白的硬组织中,协调中尺度矿化基序均匀形态的机制仍然未知。在此,利用禽腱作为矿化模型,我们揭示了中尺度矿化小球与卵黄高磷蛋白的存在之间存在紧密关联。通过设计一种卵黄高磷蛋白稳定的生物矿化簇介质,我们在体外和体内的胶原蛋白基质中复制了明确的中尺度球形结构。深入研究表明,卵黄高磷蛋白在生理浓度的生物矿物质存在下会发生构象转变,并自组装成矿物质密集的淀粉样聚集体。这些矿物质密集聚集体与胶原蛋白的空间结合作为模板,指导中尺度矿化小球的形成。在纳米尺度上,这种结合促进矿物质前体的释放和扩散到纤维中进行纤维内矿化。这一发现强调了卵黄高磷蛋白 - 生物矿化聚集体在从中尺度到纳米尺度的分级矿化模板中的关键作用。这项研究不仅阐明了基于胶原蛋白的矿化层次结构的复杂机制,还推动了高度仿生材料设计和再生医学的前沿进展。