Suppr超能文献

对水稻地方品种 14 个农艺性状的全基因组关联研究。

Genome-wide association studies of 14 agronomic traits in rice landraces.

机构信息

National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

Nat Genet. 2010 Nov;42(11):961-7. doi: 10.1038/ng.695. Epub 2010 Oct 24.

Abstract

Uncovering the genetic basis of agronomic traits in crop landraces that have adapted to various agro-climatic conditions is important to world food security. Here we have identified ∼ 3.6 million SNPs by sequencing 517 rice landraces and constructed a high-density haplotype map of the rice genome using a novel data-imputation method. We performed genome-wide association studies (GWAS) for 14 agronomic traits in the population of Oryza sativa indica subspecies. The loci identified through GWAS explained ∼ 36% of the phenotypic variance, on average. The peak signals at six loci were tied closely to previously identified genes. This study provides a fundamental resource for rice genetics research and breeding, and demonstrates that an approach integrating second-generation genome sequencing and GWAS can be used as a powerful complementary strategy to classical biparental cross-mapping for dissecting complex traits in rice.

摘要

揭示适应各种农业气候条件的作物地方品种的农艺性状的遗传基础对世界粮食安全至关重要。在这里,我们通过对 517 份水稻地方品种进行测序,确定了约 360 万个 SNP,并使用一种新的数据插补方法构建了水稻基因组的高密度单倍型图谱。我们对 Oryza sativa indica 亚种群体中的 14 个农艺性状进行了全基因组关联研究 (GWAS)。通过 GWAS 鉴定的位点平均解释了约 36%的表型方差。六个位点的峰值信号与先前鉴定的基因密切相关。这项研究为水稻遗传学研究和育种提供了一个基础资源,并表明整合第二代基因组测序和 GWAS 的方法可以作为一种强大的互补策略,用于解析水稻复杂性状,而无需采用经典的双亲子交叉作图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验