Department of Electrical & Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
Ann Biomed Eng. 2011 Feb;39(2):801-11. doi: 10.1007/s10439-010-0189-x. Epub 2010 Oct 23.
Obstructive sleep apnea (OSA) causes a pause in airflow with continuing breathing effort. In contrast, central sleep apnea (CSA) event is not accompanied with breathing effort. CSA is recognized when respiratory effort falls below 15% of pre-event peak-to-peak amplitude of the respiratory effort. The aim of this study is to investigate whether a combination of respiratory sinus arrhythmia (RSA), ECG-derived respiration (EDR) from R-wave amplitudes and wavelet-based features of ECG signals during OSA and CSA can act as surrogate of changes in thoracic movement signal measured by respiratory inductance plethysmography (RIP). Therefore, RIP and ECG signals during 250 pre-scored OSA and 150 pre-scored CSA events, and 10 s preceding the events were collected from 17 patients. RSA, EDR, and wavelet decomposition of ECG signals at level 9 (0.15-0.32 Hz) were used as input to the support vector regression (SVR) model to recognize the RIP signals and classify OSA from CSA. Using cross-validation test, an optimal SVR (radial basis function kernel; C = 2(8) and ε = 2(-2) where C is the coefficient for trade-off between empirical and structural risk and ε is the width of ε-insensitive region) showed that it correctly recognized 243/250 OSA and 139/150 CSA events (95.5% detection accuracy). Independent test was performed on 80 OSA and 80 CSA events from 12 patients. The independent test accuracies of OSA and CSA detections were found to be 92.5 and 95.0%, respectively. Results suggest superior performance of SVR using ECG as the surrogate in recognizing the reduction of respiratory movement during OSA and CSA. Results also indicate that ECG-based SVR model could act as a potential surrogate signal of respiratory movement during sleep-disordered breathing.
阻塞性睡眠呼吸暂停(OSA)会导致气流暂停,同时呼吸努力持续进行。相比之下,中枢性睡眠呼吸暂停(CSA)事件没有呼吸努力。当呼吸努力低于呼吸努力峰峰值前 15%时,即可识别 CSA。本研究旨在探讨 OSA 和 CSA 期间呼吸窦性心律失常(RSA)、心电图衍生呼吸(EDR)和心电图信号的基于小波特征是否可以作为呼吸感应体积描记法(RIP)测量的胸运动信号变化的替代物。因此,从 17 名患者中收集了 250 个预先评分的 OSA 和 150 个预先评分的 CSA 事件以及事件前 10s 的 RIP 和 ECG 信号。RSA、EDR 和心电图信号的小波分解在 9 级(0.15-0.32Hz)水平作为输入,用于支持向量回归(SVR)模型来识别 RIP 信号,并将 OSA 从 CSA 中分类。使用交叉验证测试,最优 SVR(径向基函数核;C=2(8)和 ε=2(-2),其中 C 是经验风险和结构风险之间权衡的系数,ε 是不敏感区域的宽度)表明它正确识别了 243/250 OSA 和 139/150 CSA 事件(95.5%检测准确率)。在 12 名患者的 80 个 OSA 和 80 个 CSA 事件上进行了独立测试。OSA 和 CSA 检测的独立测试准确率分别为 92.5%和 95.0%。结果表明,使用 ECG 作为替代物的 SVR 在识别 OSA 和 CSA 期间呼吸运动减少方面具有优越的性能。结果还表明,基于 ECG 的 SVR 模型可以作为睡眠呼吸障碍期间呼吸运动的潜在替代信号。